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Abstract

The patterns of material accumulation in buildings and infrastructure accompanied by rapid urbanization offer an important, yet hitherto largely 
missing stock perspective for facilitating urban system engineering and informing urban resources, waste, and climate strategies. However, our 
existing knowledge on the patterns of built environment stocks across and particularly within cities is limited, largely owing to the lack of sufficient 
high spatial resolution data. This study leveraged multi-source big geodata, machine learning, and bottom-up stock accounting to characterize the 
built environment stocks of 50 cities in China at 500 m fine-grained levels. The per capita built environment stock of many cities (240 tonnes per 
capita on average) is close to that in western cities, despite considerable disparities across cities owing to their varying socioeconomic, 
geomorphology, and urban form characteristics. This is mainly owing to the construction boom and the building and infrastructure-driven economy 
of China in the past decades. China’s urban expansion tends to be more “vertical” (with high-rise buildings) than “horizontal” (with expanded road 
networks). It trades skylines for space, and reflects a concentration–dispersion–concentration pathway for spatialized built environment stocks 
development within cities in China. These results shed light on future urbanization in developing cities, inform spatial planning, and support 
circular and low-carbon transitions in cities.
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1. Introduction

Urbanization is one of the most important global megatrends of the past century [1,2]. The next three decades will see 
another 2.5 billion rural residents moving into urban areas—90% of them being from Asia and Africa—and approximately 
68% of the global population will live in cities by 2050 [3]. Urbanization represents a process of population concentration [4], 
expansion of construction land [5], together with the accumulation of materials in buildings [6] and infrastructure [7] (built 
environment) that defines the physical space of urban activities and provides key services such as shelter and mobility [8]. 
The construction, maintenance, and demolition of urban built environment stocks result in major sustainability challenges for 
cities [9–11], such as resource demand [12], energy use [13], greenhouse gas (GHG) emissions [14,15], and construction and 
demolition waste generation [16]. Therefore, understanding the patterns of urban built environment stock development is 
important to facilitate urban system engineering, inform the circular and low-carbon transition of existing cities, and shed 



light on future urbanization in the Global South [17].
Previous studies on the patterns of built environment stocks were mostly focused at the regional or national scales, 

particularly for the temporal dynamics of key construction materials, such as steel [18,19] and cement [20], and sectors, 
including buildings [21] and subways [22]. A handful of efforts were made at the urban scale [23–25]; however, our existing 
knowledge of the spatial patterns of built environment stocks across and particularly within cities is limited, largely owing to 
the lack of high spatial resolution data—which is highly data- and labor-intensive [26]. Emerging new types of urban big data, 
such as point-of-interest data [27], and technologies, such as remote sensing and deep learning [28], offer an opportunity to 
address such gaps. However, this is not fully captured in the literature.

China is a living laboratory for global urbanization over the past four decades [29]. It has experienced a boom in the 
development of urban built environment stocks. This benefits economic growth and the well-being of urban residents in 
China. It also results in significant environmental challenges, including construction and demolition waste generation [16,30], 
and GHG emissions [31,32]. A thorough benchmarking and understanding of built environment stocks across and within cities 
at different levels of development is essential for China’s endeavor to improve the quality of new urbanization, build zero-
waste and eco-cities, and achieve its climate ambition of “peaking before 2030 and neutrality before 2060.” However, existing 
characterization of built environment stocks for Chinese cities either focus on specific construction materials [24] or sectors 
[33–35] without spatial resolution, or are limited to a few cities, such as Beijing [36] and Shanghai [37], or urban areas, such 
as Tiexi District of Shenyang [38], that cannot support cross-city comparison.

Here, we aimed to address these knowledge gaps by leveraging various urban systems engineering methods involving big 
geodata, machine learning, and bottom-up stock accounting. We quantified the built environment stocks of 50 Chinese cities 
and explored their spatial patterns across and within them. Our findings help to inform waste management, urban mining, 
climate change mitigation, and spatial planning, and the circular and low-carbon transition of Chinese cities, shedding further 
light on the sustainable urban development of other cities worldwide.

2. Materials and methods

The overall workflow for characterizing the spatialized built environment stocks of the 50 cities in China is shown in Fig. 
1. Briefly, multi-source geodata was initially collected and the material composition intensity (MCI) database was established, 
followed by leveraging bottom-up stock accounting and machine learning approaches to calculate gridded building and 
infrastructure material stocks of 50 Chinese cities on 500 m fine-grained levels. Finally, a spatial analysis was conducted to 
reveal the pathway for spatialized urban built environment stock development across and within cities in China.



Fig. 1  Study design and workflow for characterizing the built environment stocks of 50 cities in China at 500 m fine-grained levels. MCI: material 
composition intensity; POI: points of interest; MS: material stock; GDP: gross domestic product; ML: machine learning; DBSCAN: density-based 
clustering algorithm

2.1 Scope and data sources

The built environment stocks considered in this analysis included different types of buildings, such as agricultural, 
commercial, educational, historical, industrial, mixed, municipal, parking, public, residential, sports, and storage, and 
transport infrastructure, including roads, railways, and subways. Other types of infrastructure including ports and pipelines 
contribute very little to the total urban built environment stock and are considered negligible. The year of reference for the 
calculation was 2018; it was largely based on the availability of multisource big geodata, and 50 Chinese cities were selected 
for analysis. They cover all provincial capitals and cities of economic, cultural, and location importance. Together, they 
account for 50% of the gross domestic product (GDP), 32% of the population, and 15% of the built-up land area of all cities 
in China, and are deemed representative and sufficient for our comparison.

The important datasets of these 50 selected cities include building footprints—from Baidu, the largest online map portal in 



China, building age—mainly from real-estate company websites, land use—on a 500 m resolution for five land use categories 
from the Essential Urban Land Use Categories in China database [39], except for the three sample cities (Beijing, Guangzhou, 
and Shanghai) that are based on a 30m fine-grained level for 12 land use categories, points of interest (POIs)—from Amap, 
the largest mobile online map platform in China, transport infrastructure—mainly from OpenStreetMap, gridded population—
from WorldPop mainland China dataset [40], socioeconomic development—mainly from the municipal statistical yearbook, 
and MCI data collected from various sources (Supplementary Material Sections S1.1–1.6).

In particular, a China-specific building MCI database was compiled from various sources, including the bills of quantities, 
expert interviews, and literature, covering over 2000 sample buildings constructed between 1963 and 2017. They were 
classified into 12 building typologies (agricultural, commercial, educational, historical, industrial, mixed, municipal, parking, 
public, residential, sport, and storage). The road and subway MCIs were collected from construction bills provided by several 
construction companies in China (Supplementary Material Section S1.7).

2.2 Bottom-up and spatially refined building stocks of three sample cities

Three cities, Beijing, Guangzhou, and Shanghai, were selected as the training samples based on data availability. In 
particular, the 12 building types from 30 m fine-grained land use data were collected the three cities from the corresponding 
municipal planning administrations (Supplementary Fig. S2). A bottom-up and spatially refined building stock accounting 
method was used for these three cities, based on our previous study [36] and shown in Eq. (1). Ten types of construction 
material were considered: cement, steel, timber, brick, gravel, sand, asphalt, lime, glass, and ceramic.

𝑀𝑆𝑚,𝑖 = ∑
𝑚,𝑖

(𝐵𝐹𝑖 × 𝑁𝐹 × 𝑀𝐶𝐼𝑚,𝑖)#(1)

MSm,i represents the building stock of material m present in building type i, BFi (measured in m2) is the area of the one-floor 
building footprint, NF represents the number of building floors, and MCIm,i (kg·m−2) is the composition intensity of material 
m of type i.

2.3 Machine learning for estimating building stocks for the other 47 cities

Accurate building data with attributes of function, year of construction, and 30 m fine-grained land use data were 
unavailable for the other 47 cities. Therefore, we leveraged machine learning models to estimate building stocks using the 
gridded stock values of the three training sample cities aggregated at a 500 m resolution. We combined building attributes 
and POI attributes to encode each grid with a vector and utilized the random forest model to build the mapping from the grid 
vector to its material stocks. The model was trained using 80% of the data from Beijing, Guangzhou, and Shenzhen, validated 
using the remaining 20%, and eventually applied to estimate the building material stock values for each grid of the other 47 
cities.

2.4 Transportation material stock calculation

The material stock value was computed for the urban transportation systems in all 50 cities based on the lengths and MCIs 
of railways, subways, and roads, as shown in Eq. (2). Road MCIs cover five levels: expressways, first-, second-, third-, and 
fourth-class roads. Railway lines, subway lines, and subway stations were considered for the railway and subway stock 
estimation.

𝑀𝑆𝑚,𝑗 = ∑
𝑚,𝑖

(𝑇𝐿𝑗 × 𝑀𝐶𝐼𝑚,𝑗) + (𝑆 × 𝑀𝐶𝐼𝑚,𝑠)#(2)

MSm,j is the transportation stock of material m in the transportation construction sector j (road, railway, and subway), TLj is 
the length of transportation (measured in m) in sector j and MCIm,j is the composition intensity of material m in sector j 
(measured in kg·m−1). S is the subway station, and MCIm,s is the composition intensity of material m in subway station s.

2.5 Spatial statistics for pattern identification

Material stock and population values were used from 500 m × 500 m grids for pattern identification in spatial statistics 
(Supplementary Material Section S3). The grids with the top 1% stock values are regarded as building stock centers. A density-
based clustering algorithm (DBSCAN) [41] was used to aggregate the high-stock grids together (Section S3.1). The dispersion 
index was calculated for each DBSCAN cluster to quantify the spatial dispersion of grids (Section S3.2). The city-level 
building stock per capita was calculated to understand the role of economic development. The unevenness of the grid-level 
building stock was determined using the Gini coefficient and the Lorentz curve (Section S3.3). Fitting the grid stock 
distribution of all 50 cities showed that they conformed to a two-parameter exponential distribution regardless of size, location, 
and economic development levels (Section S3.4).

3. Results and discussion

3.1 Patterns of urban built environment stocks across cities



The urban built environment stocks of 50 Chinese cities increased to 110 Gt in 2018, which is larger than the total global 
resource extraction in 2017 (92 Gt) [42]. Buildings (64.3%) and roads (33.4%) dominated the overall construction material 
stock, whereas other infrastructure only contributed a small share (2.3%). Nonmetallic minerals represented by gravel (51 
Gt), cement (26 Gt), sand (17 Gt), and brick (12 Gt) were responsible for 96% of the total types of materials. Steel (1.9 Gt), 
timber (0.6 Gt), lime (0.5 Gt), and other materials (totaling 1.0 Gt) were used in relatively low quantities (Supplementary 
Figure Fig. S10).

The total urban built environment stock ranged from 350 Mt in Lhasa to 6786 Mt in Beijing when compared across cities. 
Stock quantities in 49 out of 50 Chinese cities (2202 Mt on average; except for Lhasa with 350 Mt) and stock densities (4.97 
t·m−2 on average) in all 50 Chinese cities were substantially higher than in many western cities—for example, 67 Mt and 0.22 

t·m−2 in Odense [12], and 380 Mt and 0.96 t·m−2 in Vienna [43], while per capita stocks (249 tonnes per capita (t·cap−1) in 

China) were at approximately the same level—329 t·cap−1 in Odense [12], 247 t·cap−1 in Wakayama [12], 210 t·cap−1 in Vienna 

[43], 209 t·cap−1 in Padua [44], and 272 t·cap−1 in the United Kingdom [45] (Supplementary Table S19). These differences 
could be explained by the large size and population, but limited built-up area in most Chinese cities [46], together with 
construction-driven urbanization and real estate-based economic development in the past decades [47].

The urban built environment stocks were unevenly distributed across Chinese cities with varying levels of socioeconomic 
development (Fig. 2 and Supplementary Figs. S11–14). Cities with large stocks were mostly distributed in the east (35.88%), 
north (18.58%), and southwest (11.66%), whereas relatively lower amounts were found in cities in the south (9.74%), 
northeast (9.56%), central (9.11%), and northwest (5.46%) (Supplementary Fig. S15). In particular, the top 10 cities with the 
largest stocks were all distributed in China’s major urban agglomerations. This includes 3.3 Gt in Hangzhou and 6.8 Gt in 
Beijing, represented by 25.9 Gt in the Yangtze River Delta and 17.9 Gt in Jing–Jin–Ji Metropolitan Region, which account 
for 62% of the total. However, cities in the northeast (323 t·cap−1, 3.8 kg·CNY−1) and northwest (346 t·cap−1, 4.0 kg·CNY−1) 
show significantly higher values than other regions (Supplementary Fig. S16) on a per capita level and per GDP level. This 
was mainly related to the shrinking population in the northeast [48] and the low population density in the northwest [49], 
suggesting that material occupancy does not translate into economic growth in these areas [50]. A consideration of the built-
up areas shows that cities in the north have the densest stocks (6.1 t·m−2), while the southwest and northwest have lower stock 

density (both approximately 4.0 t · m−2 on average, Fig. S16). This reflects the geomorphological and socioeconomic 
characteristics of western China, which has more abundant land and less dense populations than the east [51].

Fig. 2 Urban built environment stocks (total, buildings, and infrastructure) of the 50 selected cities in China. The seven colored wheels 
represent stocks aggregated by region (north, northeast, east, south, central, southwest, and northwest) accompanied by corresponding cities ranked 
by stock volume. The outer ring shows the total urban built environment stocks by city in this region, and the inner ring presents the ratio of 
building and infrastructure stocks in each city.



Statistically linear trends between the urban built environment stocks and socioeconomic factors confirm that cities with 
larger populations and areas and richer cities (in terms of GDP) tend to accumulate more construction materials than smaller 
and poorer cities (Figs. S12–14). This is also reflected by the fact that the urban built environment stocks tended to increase 
with an increasing tier rank and urbanization rate after categorizing the 50 cities into 6 tiers (first, new-first, second, third, 
fourth, and fifth) using an official classification system based on urban development factors including commercial vitality, 
transportation convenience, resident activity, lifestyle diversity, and future adaptability (Fig. S11). In this context, megacities 
with lower stocks per capita (such as 174 t · cap−1 in Chongqing), per square meters built-up area (such as 2.8 t · m−2 in 

Guangzhou), and per GDP (such as 1.3 kg·CNY−1 in Shenzhen) may have various sustainable paths of stock accumulation 
and socioeconomic growth that deserves more in-depth analysis to identify leapfrogging opportunities for other yet-to-be 
developed cities in China and beyond.

The urban form reflecting the physical layouts, structures, and functions of a city is an important driver of the varying levels 
of material stocks in the urban built environment [52]. Most construction materials were stocked in residential (43%) and 
industrial (22%) areas, followed by commercial (18%), public (14%) and infrastructure (4%) areas on average across the 50 
cities (Fig. 2(a)). However, these proportions vary by city according to their socioeconomic characteristics. For example, 
Beijing is the capital of China and has the largest share (31%) of stock in public areas (such as education, culture, and 
healthcare). Meanwhile, Quanzhou and Foshan are two important manufacturing cities in south China that have the largest 
share of stocks in industrial areas at 52% and 47%, respectively. Furthermore, the variations between material stocks and land 
areas in different land-use categories clearly reveal the role of urban forms in determining built environment stocks. For 
example, an average commercial area (often dense and high-rise) accounts for only 3% of land use, but contributes 18% of 
the total stock, whereas public areas are often sparse and low, account for 49% of land use, but only contribute 14% of the 
total stock (Figs. 3(a) and (b)).

The building-to-road (BtR) stock ratio in China (5.47 on average for all 50 cities) is notably higher than that in European 
cities (3.45 in Salford Quays in Manchester [25], 3.13 in Odense city center [12], and 2.94 in Gothenburg [53]) and 
industrialized counties (1.65 in Japan [54], 1.12 in Germany [55], and 0.91 in Austria [56]). This result of lower road network 
densities is in line with earlier findings on the city [57] and national [58] levels in China and suggests that China’s urban 
expansion tends to be more “vertical” than “horizontal.” Further road and infrastructure development, particularly in 
residential and commercial areas, through better spatial planning or smart design and integration of buildings and roads has 
become an urgent need to optimize urban services and residents’ well-being (Fig. 3)) [59]. Spatially, larger BtR ratio grids 
were mostly located in city centers, while lower value grids were found in city outskirts; the BtR ratio at the grid level was 
identified following a log-normal distribution across cities (Supplementary Fig. S21).

Fig. 3  Statistical distribution of built environment stock related values across cities by land use categories. (a) Shares of stocks, (b) shares 
of land areas, and (c) building to road (BtR) ratios. Stocks were calculated as an aggregation of stock values on the 500 m × 500 m grid level 
(Supplementary Material Section S3.6). The dominant type with the largest shared area is applied to the entire grid if a grid has several land use 
typologies (Section S1.5).

3.2 Patterns of spatially refined urban built environment stocks within cities

The gridded building material stocks were clustered in groups of patches using a density-based clustering algorithm when 
presented at a high spatial resolution on the 500 m × 500 m grid level [41] that detects categories based on the closeness of 
spatial distribution. In contrast, infrastructure material stocks generally follow the distribution of road lines and are spread 
throughout the city. Furthermore, the spatial patterns of building material stocks in Chinese cities suggest that there are three 
major phases of urban development: monocentric concentration, multicentric dispersion, and multicentric concentration.

Table 1 and Supplementary Table S23 present the spatial characteristics (number of clusters, dispersion index (DI) of 
clusters, and Gini index of building material stocks) of the three phases of building material stock growth as the average per 
capita GDP of cities increases from 70 649, 105 964, and 120 403 CNY, respectively. Fig. 4 shows such spatial patterns in 



representative case cities (Nanyang, Chongqing, Zhengzhou, and Beijing).
• A city in its relatively early development stage forms very few clusters (exemplified by Nanyang out of 11 cities 

experiencing a monocentric concentration phase), and a limited number of top building stock grids are compactly distributed 
in this city with a relatively low dispersion index (DI = 9, Fig. 4(a))

• An increasing number of grids with large building stocks emerge on the outskirts of urban areas as cities continue to 
develop and accumulate materials in current grids (as new urban districts and satellite towns). Such multicentric-dispersion 
phases are featured by spreading clusters (increasing from 2 to 28) and growing dispersion index (increasing from 20 to 221) 
and can be observed in 22 cities (exemplified by Chongqing and Zhengzhou in Figs. 4(b) and (c), respectively).

• The growing urban built environment stocks gradually help ease communication and mobility in cities by upgrading 
transportation and telecommunications, attracting more population and businesses, and boosting the urban economy [60]. 
Accordingly, construction activities and building stock clusters emerge in subsidiary centers that link the central and outskirt 
clusters. Seventeen cities were identified in this multicentric concentration phase with a closer distance between building 
stock clusters (DI under 20), including Beijing (Fig. 4(d)).

Table 1
Spatial characteristics of building material stocks on 500 m fine-grained levels of the 50 Chinese cities.

Categories
Properties Number of citiesNumber of clustersDispersion indexGini index

GDP per capita (CNY)

Monocentric-concentration
Cluster = 1 or
Cluster ≥ 2 and DI < 2011 1 (1–2) 9 (2–21) 0.58 (0.4–0.76)

70 609

Multicentric-dispersion
Cluster > 2 and DI ≥ 2022 11 (2–28) 70 (20–221) 0.65 (0.45–0.79)

105 964

Multicentric-concentration
Cluster > 2 and DI < 2017 9 (3–25) 13 (9–19) 0.58 (0.46–0.64)

120 403

The 11 cities at the monocentric-concentration phase are Guiyang, Haikou, Handan, Lanzhou, Lhasa, Linyi, Nanchang, Nanyang, Urumqi, Xining, 
and Zhoukou; the 22 cities at the multicentric-dispersion phase are Baoding, Changsha, Chongqing, Dalian, Foshan, Fuzhou, Harbin, Hangzhou, 
Luoyang, Nanning, Nantong, Ningbo, Qingdao, Quanzhou, Shijiazhuang, Suzhou, Tangshan, Weifang, Wenzhou, Wuxi, Yinchuan, and 
Zhengzhou; and the 17 cities at the multicentric-concentration phase are Beijing, Changchun, Chengdu, Guangzhou, Hefei, Hohhot, Jinan, 
Kunming, Nanjing, Shanghai, Shenyang, Shenzhen, Taiyuan, Tianjin, Wuhan, Xiamen, and Xi’an. The average values are shown for the number 
of clusters, dispersion index, and Gini index, with the ranges shown in parentheses.



Fig. 4 Spatial patterns of building material stocks on 500 m fine-grained levels exemplified by Nanyang, Chongqing, Zhengzhou, and Beijing. 
(a–d) Spatial distributions of undeveloped (from 0 to medium value of urban stock grids), developed (from medium to top value of urban stock 
grids), top (the top 1% of all urban stock grids), and top-cluster (the cluster of top grids) among building material stock grids, respectively (see 
Section S3.1 for details of grid classification). (e–h) The Gini index (GI) of building material stocks. (i–l) The two stages of linear correlations 
between building material stocks (with a break point) and population on the grid level ranked in ascending order. K represents the slope of different 
linear distributions.

Chinese cities demonstrate an “equilibrium–disequilibrium–equilibrium” pathway of building material stock development 
corresponding to the “concentration–dispersion–concentration” pattern observed above. This was initially shown in the 
changes in the Gini index values (average from 0.58, 0.65, and 0.58 for the three phases; Table 1 and Figs. 4(e)–(h)). Moreover, 
a two-parameter exponential distribution pattern was revealed for the building material stock growth of the 50 cities 
(exemplified by the probability density functions of Beijing, Suzhou, and Linyi in Fig. 5(a) and detailed for other cities in 
Supplementary Materials Section S3.4 and Appendix A.6).

The distribution of the 50 cities in the four quadrants defined by the location parameter (horizontally with an increasing 
proportion of low-stock grids) and the scale parameter (vertically with an increasing evenness of stock distribution) of their 
respective two-parameter exponential distributions are shown in Fig. 5(b). The cluster centers of cities in the monocentric-
concentration phase (green star) and in the multicentric-concentration phase (orange star) appear in the second quadrant. This 
indicated a relatively uniform distribution of building material stocks. In contrast, the cluster center of cities in the 
multicentric-dispersion phase is located in the fourth quadrant. This represents a relatively uneven spatial distribution of 
building material stocks. The high number of cities with this disequilibrium status (22 out of 50) suggests an urgency for more 
optimized planning of urban built environment stocks and more coordinated development of urban and rural areas [61,62]. In 
this context, cities with higher, but more equalized built environment stocks (such as Changchun with eight clusters, 13 for 
DI, and 0.46 for GI) can shed light on stock accumulation pathways for other Chinese cities.

The spatially refined building material stocks and gridded population showed a linear correlation with a breakpoint for 
smaller population grids (R2 = 0.98, on average) and larger ones (R2 = 0.94, on average) in all 50 cities at 500 m resolution. 
These breakpoints are determined from the continuous piecewise linear function algorithm [63] and mostly vary between 1000 
and 3000 for gridded populations—exemplified by Nanyang, Chongqing, Zhengzhou, and Beijing in Figs. 4(i)–(l) and 
detailed for other cities in Supplementary Material Section S3.5). That is, the stock growth rate in grids with a smaller 
population (Klow = 526) was significantly higher than that in grids with larger populations (Khigh = 98). This implies that more 
materials were required in the initial stage of urbanization.



Fig. 5 Building material stock growth in Chinese cities following a two-parameter exponential distribution pattern. (a) The curves 
exemplified for Beijing, Suzhou, and Linyi; and (b–c) the location parameter μ that determines the transition along the horizontal axis and 
proportion of low stock grids and the scale parameter θ that refers to the slope chart level and evenness of stock distribution of the two-parameter 
exponential distribution curves across the 50 cities categorized by the three phases. The two dotted lines in (b) represent the mean values of μ and 
θ.

3.3 Discussion and implications

Our results reveal that the built environment stocks of many cities in China are close to or higher than those of mature cities 
in industrialized countries at the per capita level or per area level. This is in line with earlier findings on China’s stock patterns 
of major construction materials such as cement [20,64] and aggregates [65] at the national level. Such patterns reflect the 
construction boom and real estate- and infrastructure-driven urbanization in the past decades in China. Many cities in China 
are building high-rise residential and non-residential buildings owing to their large population and increasingly limited land 
area, thus trading skylines for space. This suggests that understanding urban development from a physical stock perspective 
provides an important and complementary angle for characterizing and informing urbanization that is largely missing in the 
current literature on urbanization that focuses mostly on population growth [66] and land use change [67].

The spatially refined patterns of urban built environment stocks across and within cities clearly show the role of urban 
socioeconomic development, such as population and GDP, geomorphology, such as location and land area, and urban form, 
such as building-to-road ratio and land use structure, in determining the total volume and the sectoral and spatial distribution 
of stocks. Therefore, the pace of built environment construction, coordination of buildings and infrastructure development, 



and tailored approaches for spatial planning and urban resource management should consider the varying stages of urban 
development in different cities [68,69]. These spatiotemporally explicit patterns could shed light on future urbanization in 
western China and other cities in the world to bypass the disequilibrium stage and avoid spatial lock-ins, and provide the 
public, government, or industry stakeholders with insights into optimized urban spatial planning and urban system engineering 
towards smart resources, waste, and climate strategies and circular and low-carbon transitions of cities.

Such implications for urban system engineering primarily apply to resource and waste management perspectives. For 
example, high-resolution mapping of urban built environment stocks allows for an in-depth understanding of urban resource 
efficiency and forecasting of the quantity, composition, location, and value of future construction and demolition waste 
generation. Currently, construction and demolition waste in China is mostly dumped or landfilled with only 5% recycled [70]. 
This challenge will escalate considering the continued urbanization and construction boom in the foreseeable future in China. 
Understanding built environment stocks with a high spatiotemporal resolution provides a characterization of the urban 
resource cadaster [12] and enables the circular transition of cities [71]. This includes waste management and urban mining 
based on spatial and logistics optimization to minimize economic costs and maximize reuse and recycling.

Moreover, understanding the embodied climate impacts of urban built environment stocks facilitates discussions on 
accounting and mitigating GHG emission during the construction and operation of a city. The carbon replacement value (CRV) 
[72,73] concept was adopted to approximate the emissions of constructing a city that would be generated if the existing stock 
of a city was replaced using current technologies and materials. The overall CRV emissions of the 50 selected cities were 
estimated to be 32 Gt. This equals 60% of the global GHG emissions in 2019 [74] or 90% of the global CO2 emissions in 2021 
[75]. The CRV emissions in Beijing (2.29 Gt or 1.61 t·m−2), Shanghai (2.12 Gt or 2.12 t·m−2), Chengdu (1.33 Gt or 2.57 t·m−2), 

Suzhou (1.27 Gt or 2.75 t·m−2), and Tianjin (1.26 Gt or 1.25 t·m−2) are among the top five corresponding to the highest urban 
built environment stocks. This is much larger than those in European (such as 11 Mt in Odense [72]) and Australian (such as 
24 Mt in Melbourne [76]) cities. Urban built environment stocks are essential to provide residents with basic services. The 
CRV emissions in these 50 cities can be used as a benchmark for the climate quota of the other 287 prefecture-level cities in 
China to reach the same level of services. Relatively low operational emissions and high CRV emissions were observed in 
two cities that dominate high technology and service-based economies: Shenzhen and Chengdu. In this context, cities with 
developed economies, upgraded industry structures, low operational emissions, low built environment stocks, and low CRV 
emissions (for example, Changsha, Quanzhou, Nantong, and Xiamen in the third quadrant of Supplementary Material Fig. 
S22) may be regarded as a model for the low-carbon transition of other small and medium-sized cities in China and beyond. 
At least 251 Gt of construction materials equaling 71 Gt of CRV emissions (or approximately seven times the current annual 
carbon emissions of China [77]) is needed for China’s further urban expansion, assuming that the correlations between urban 
built environment stocks and socioeconomic parameters (Figs. S12–14) are applicable to the other 287 cities. Therefore, 
mitigation strategies ranging from technological innovations for emission-intensive construction materials (particularly steel 
[78] and cement [79]) to improving material efficiency [80], prolonging the building lifetime [30], and optimizing spatial 
planning [81] are urgently required to reduce the emissions of constructing a city. All these should be included in future model 
development and policy formulation from an urban system engineering perspective for the circular and low-carbon transition 
of cities.

3.4 Method validation and limitations

The proposed machine learning method offers a swift and effective approach for approximating urban material stocks when 
data incompleteness hinders traditional methods of building stock calculations. Four cross-validation approaches were 
designed to validate the proposed model and explore the consequent uncertainties (Supplementary Material Section S2.2). 
The prediction errors of the model were 0.23%, 3.79%, 0.119%, and 0.02% in the four different validation sets. This indicated 
that this grid-based method performs well in predicting building material stocks regardless of the city. The composition of 
building materials differs to some extent in northern and southern China owing to the different demands for winter heating. 
However, the large number of grid samples, together with our three sampling cities covering the north (Beijing) and south 
(Guangzhou and Shenzhen) allow the machine learning model to map building attributes to stock values in the sampling cities 
and make accurate predictions in other cities.

A comparison of our aggregated city-level building stock results for 2018 with a bottom-up accounting study [82] showed 
that the average differences were below 20% (2.59 Gt vs. 3.46 Gt for Chongqing, 4.19 Gt vs. 4.75 Gt for Shanghai, and 3.46 
Gt versus 2.78 Gt for Tianjin). We believe that the building archetype classification and reference year may contribute to 
these differences. Furthermore, the building stock results in our study are significantly higher than those of two other studies 
in a few Chinese cities [27,37]. This gap is mainly related to the different years of estimation (2018 in this study vs. 2010 in 
previous literature) and the underestimation of nonresidential building stocks in these two studies (see Table S19). Overall, 
our study provides the first quantification of urban built environment stocks across and within cities on a large scale (50 
cities).

The proposed machine learning method helped approximate urban material stocks across and within cities with overall 
good modelling performance. However, some limitations should be acknowledged. First, the absolute stock results bear 
unavoidable uncertainties and limitations owing to data gaps. Ideally, MCI data should be specific to each building or 
transportation infrastructure. We collected over 2000 building samples constructed from 1963–2020 and used the mean value 
to derive the MCIs for different building typologies. This per square meter indicator is very convenient to scale up, but does 
not linearly scale with the floor area. For example, a lower material intensity was identified in large-area buildings compared 



with smaller buildings [83]. More material intensities are required to withstand wind and earthquake loads with increasing 
building height [84]. Thus, the absolute values of building stock can have an uncertainty of up to ±30%. Second, the data 
collection process may introduce errors since building coverage may be incomplete, and the vector maps of buildings and 
infrastructure may differ from reality, leading to uncertainties in the results. The performance of the machine learning model 
can be compromised when handling materials such as ceramics and glass that have a lower percentage composition. 
Nevertheless, their effects were relatively negligible owing to their insignificant contributions to the overall quantity. Finally, 
we used the process-based emission factors from Carbon Emission Accounts and Datasets (CEADs) and the Chinese Life 
Cycle Database (CLCD) for the CRV calculation using eBalance software. This does not cover the environmental impacts 
associated with supply chains. Therefore, our CRVs may be underestimated owing to truncation errors [85] in emission 
accounting. Overall, this study provides the first large-scale quantification of urban built environment stocks, although these 
limitations should be considered when interpreting the results.

4. Conclusions

Multi-source big geodata, machine learning, and bottom-up stock accounting were leveraged to characterize the built 
environment stocks of 50 selected cities in China at 500 m fine-grained levels. This large-scale empirical analysis helped to 
reveal considerable disparities in stocks across Chinese cities owing to their varying socioeconomic, geomorphological, and 
urban form characteristics. In particular, building material stock development in Chinese cities appeared to follow a two-
parameter exponential distribution pattern and a concentration–dispersion–concentration pathway. Our results offer an 
important, yet hitherto largely missing stock perspective for characterizing and informing urbanization. This informs urban 
planners and policy makers on spatial planning, and facilitates urban system engineering towards the circular and low-carbon 
transition of cities. The modeling framework could be extended and validated using more cities to shed more light on future 
urbanization in China and in other countries.
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