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Abstract: Over the past few decades, extensive research has shed light on immune alterations
and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut
phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a
crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-
1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability
of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received
approval for treating multiple sclerosis, an autoimmune disease of the central nervous system
(CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although
the precise mechanisms of action are still under investigation, the effectiveness of S1P-based
drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This
comprehensive review aims to delve into the molecular mechanisms through which S1P modulates
the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus
on psychiatric diseases, with the primary objective of uncovering the potential of innovative
therapies based on S1P signaling.

Keywords: sphingosine-1-phosphate; psychiatric diseases; immune system; inflammation; barrier
function; blood-brain barrier; intestinal barrier

1. Immune Dysregulation and Barrier Function in Psychiatric Diseases
1.1. Immune Dysregulation in Psychiatric Diseases

A substantial proportion of psychiatric patients (20-60%) fail to achieve a com-
plete remission with currently available treatments, a statistic that remains consistent
for severe mental illnesses (SMI), including major depressive disorder (MDD) and
schizophrenia (SZ) [1]. This situation has prompted the scientific community to ex-
plore new pathways in the pathophysiology of these SMI, which may unveil new
targets, diagnostic tools, or risk biomarkers to personalize and stratify treatments.
In this context, a promising area of research in recent years has revolved around the
potential dysregulation of immune or inflammatory responses in both the brain and the
rest of the body in these diseases. Evidence from both preclinical models and studies
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involving human samples suggests a pathophysiological role of these processes. Im-
portantly, therapeutic interventions could potentially target these pathways to enhance
patient treatment outcomes.

Neuroinflammation is a common feature of many neurodegenerative diseases, and
over the last two decades, this concept has also extended to psychiatric disorders. To
illustrate this, we will go into details with MDD and SZ, but immune alterations have
been also found in other mental pathologies, including such as bipolar disorder (BD) [2],
autism spectrum disorder (ASD) [3], attention deficit hyperactivity disorder (ADHD) [4],
and eating disorders (EDs) [5].

The first genome-wide association studies (GWAS) [6] identified a substantial number
of genes (108) implicated in cohorts of approximately 40,000 patients with SZ. Several other
genetic association studies have validated these data. Among these genes, a prominent
cluster (the largest, surpassing other neurotransmitter-related ones) located on chromosome
6 may regulate the inflammatory and immune response. This discovery has confirmed
previous clinical evidence and underscored the connection between the immune system
and SZ, a relationship further corroborated in MDD [7,8].

Among the nonspecific inflammatory features identified in blood analyses of psychi-
atric patients, leukocytosis with neutrophilia is one of the most consistent in first-episode
psychosis, SZ, and BD [9,10]. Another nonspecific inflammatory parameter elevated
in SZ patients is the erythrocyte sedimentation rate [11]. Interestingly, longitudinal
studies encompassing tens of thousands of individuals tracked over a period of 45 years
(who had their erythrocyte sedimentation rate measured during health examinations
before military service), revealed that those who later developed psychotic symptoms
or SZ exhibited higher levels of this nonspecific inflammatory parameter years earlier.
This suggests a potential sensitizing effect of prior low-grade inflammatory stimulus in
vulnerable individuals.

Hence, innate and adaptive immune alterations have been observed in MDD [12-14]
and SZ [15-17]. Moreover, some studies support the existence of psychiatric and au-
toimmune comorbidities [18]. Imaging studies (in vivo, positron emission tomography,
or postmortem tissue evaluation for anatomopathological assessment) have revealed mi-
croglial activation in the brains of patients with MDD [19,20] or SZ [21,22]. Interestingly,
there is a correlation between systemic inflammation and brain functional consequences:
patients with higher plasma C-reactive protein (CRP) levels showed fewer connectivity
indices in the central nervous system (CNS) [23].

It is well-established that certain immunomodulatory treatments, such as interferon
therapy, may induce MDD symptoms [24]. Recent evidence also indicates the development
of SZ-related behaviors under similar circumstances [25]. Similarly, the administration of
cytokines or an immunological challenge has caused behavioral changes. For instance, in
humans, injection of lipopolysaccharide (LPS), the main component of the outer membrane
of Gram-negative bacteria, induces sickness behavior (depressed mood, anhedonia, anxiety,
etc.), systemic cytokine increases, and microglial activation [26]. Behavioral alterations re-
sembling MDD or SZ, triggered by various immune stimuli—such as LPS and polyinosinic:
polycytidylic acid (Poly I:C)—have served to develop preclinical models for the study of
these pathologies [27].

Given the existing evidence, there exists a bidirectional relationship between the
immune system and current pharmacological treatments: antidepressants and antipsy-
chotics have demonstrated anti-inflammatory effects beyond their conventional neuro-
transmitter actions [28,29], while anti-inflammatory drugs have shown antidepressant
and antipsychotic effects or the ability to enhance the efficacy of these drugs when used
as adjuvants [30-32]. Nevertheless, the question of whether low-grade inflammation or
immune dysregulation is a cause or consequence of mental health disorders remains an
area of ongoing debate.
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The study by Kappelmann et al. [11], mentioned earlier, suggested a potential
causal link in individuals entering military service. Moreover, a long-term study in the
Avon County of the United Kingdom has reported an “imprinting” effect [33]. Children
exhibiting higher levels of IL-6 at the age of 9 were at increased risk of developing
psychosis or psychotic symptoms by the age of 18. In another study conducted in
Denmark, involving nearly 80,000 individuals followed over several years, patients
with SZ or psychotic symptoms displayed elevated inflammatory parameters, such as
C-reactive protein (CRP). Specifically, individuals in the fourth quartile of CRP levels
had the highest likelihood of developing the disease. These findings hold considerable
statistical robustness, as the difference persists in sub-analyses adjusted for sex and
age, and also in multivariate analyses [34]. However, the relationships with depressive
disorders are not as clearly defined.

The possibility of a widespread inflammatory environment throughout the system
reaching the brain via a more permeable blood-brain barrier (BBB) remains an intriguing
open question in numerous ongoing research projects worldwide. The origin of these
inflammatory elements in circulation is still a topic of debate, whether they stem from a
mobilization from cellular nests or from the activation of immune cells by stimulating
molecules. In this regard, recent preliminary data indicate that patients with SZ or MDD
showed an increase in the permeability of the intestinal barrier [35,36] and vice versa,
patients with inflammatory bowel diseases were susceptible to psychiatric symptoms
through leaky gut, a phenomenon related to increased intestinal permeability [37].
Moreover, recent GWAS revealed a shared genetic background between psychiatric and
gastrointestinal disorders [38]. This concurrence of phenomena may signify the potential
translocation of bacteria-derived LPS from the colon, as demonstrated in preclinical
settings using stress protocols [39].

Studies by Cai et al. [40] have recently shown that LPS can reach the BBB in mental
disorders. Specifically, there is an increase in perivascular BBB macrophages in postmortem
specimens, along with elevated inflammation markers, such as vascular cell adhesion
molecule (VCAM), identified in perivascular areas and astrocytes. Consequently, both the
brain and intestinal barriers emerge as crucial structures in psychiatric diseases, and their
dysfunctions may play a pivotal role in driving their pathophysiology.

1.2. The Brain Barriers in Psychiatric Diseases
1.2.1. Structure and Function of the Brain Barrier

The conventional notion of a singular BBB has evolved into the recognition of several
distinct brain barriers, each occupying specific neuroanatomic locations and comprising
unique structural components that regulate interactions between brain parenchyma and
blood-born molecules or cells [41,42]:

1.  BBB: constituted by microvascular endothelial cells with apical tight junction com-
plexes lining the cerebral capillaries that traverse the brain and spinal cord. Hetero-
genic endothelial cells shape the neurovascular complex interacting with neurons,
astrocytic endfeet, myocytes, perivascular macrophages, pericytes, and extracellular
matrix components [43].

2. Arachnoid (or meningeal) barrier: formed by the avascular arachnoid epithelium,
featuring tight junctions as a barrier between the cerebrospinal fluid (CSF)-filled
subarachnoid space and other meningeal structures.

3. Blood-CSF barrier: this barrier, also constituted by epithelial cells with apical tight
junctions, separate the blood vessels of the choroid plexus (fenestrated and leaky)
from the CSF.

4.  The fetal CSF-brain barrier: during early development, this barrier exists between the
CSF and brain parenchyma during early development. It acts as a functional barrier
when junctions interconnect ependymal cells.
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5. The adult ventricular ependyma: as development progresses, the ependymal cells
lose their ability to restrict the passage of larger molecules, such as proteins, between
the CSF and the brain.

There are additional brain-blood interfaces known as the circumventricular organs
(CVOs), which are characterized by the absence of the BBB and are highly vascularized
with fenestrations [43]. These brain structures, located in the third and fourth ventricles,
can classify as sensory (subfornical organ, organum vasculosum of the lamina terminalis,
and area postrema) or secretory (subcommissural organ, pituitary neural lobe, median
eminence, and pineal gland) CVOs [43].

Different types of junctions participate in connecting endothelial cells of the BBB.
Intercellular tight junctions (TJs) provide firm mechanical stability with low transcytosis
rates and composed of proteins spanning the intercellular gap (occludins and claudins),
junctional adhesion molecules (JAMs), and regulatory proteins (Zonula Occludens 1, 2,
3 (ZO-1, ZO-2, ZO-3)), responsible for linking transmembrane proteins with the actin
cytoskeleton [44]. Adherens junctions consist of cadherins and catenins that link the actin
cytoskeleton with cadherins, while gap junctions encompass tissue-specific isomers of the
connexin (Cx) family. Collectively, these junctional proteins ensure strict regulation of
paracellular permeability in the BBB [45].

Transporters are another vital component of the BBB structure, regulating the transport
of nutrients, neuroactive peptides, large proteins, and other molecules into and out of the
brain through multiple mechanisms, including carrier-mediated transport (facilitated diffu-
sion), receptor-mediated transport systems, and active efflux transporters (ATP-binding
cassette (ABC) transporter superfamily [46]. Transcytosis, another transport mechanism
across the brain endothelium, relies on vesicle trafficking and is strictly controlled under
physiological conditions. Three types of transcytosis regulate the transcellular transport
of lipophobic molecules across the cerebral endothelium: fluid phase, absorptive, and
receptor-mediated (clathrin and caveolae dependent) [47]. Lastly, another important trans-
port mechanism associated with the BBB is the glymphatic system, which primarily facil-
itates debris clearance by controlling the exchange of CSF and interstitial fluid through
astrocytic cells [48].

1.2.2. Brain Barrier Dysfunction in Psychiatric Diseases

One of the hallmarks of neuroinflammation is the dysregulation in the structure
and function of brain barriers, leading to a loss of barrier integrity and increased gen-
eral permeability to molecules and cells. Dysfunction of the BBB is a crucial event
in the pathophysiology of neurological conditions such as traumatic brain injury or
stroke [49,50]. However, the investigation of potential structural and functional alter-
ations in the BBB in neuropsychiatric diseases such as SZ, MDD, or ASD is still ongoing,
probably due to varying degrees of inflammatory processes among the affected patient
clusters (but not all) [51,52].

Studies have predominantly focused on alterations in the structure and function of
proteins forming endothelial TJs, such as claudin-5, in neuropsychiatric disorders [53,54].
Additionally, other changes have been identified in preclinical and clinical studies using
biomarkers, postmortem tissue, and neuroimaging [55]. Preclinical data are massive, and
this review summarizes the principal clinical evidence:

Increased paracellular traffic of macromolecules (albumin, IgG) [56]
Upregulation of cell adhesion molecules (integrins, cadherins) [57,58] facilitating para-
cellular and transcellular pathways for the CNS infiltration of peripheral leukocytes
(T and B lymphocytes) [59]

e Elevated serum and CSF levels of astrocyte-derived neurotrophin S100B, serving as a
marker for brain damage, BBB disruption, and even brain injury (alarmin) [60,61]

e  Structural and functional changes of cellular populations located in the perivascular
space (pericytes, border-associated macrophages) [40,62-64]
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e  Dominant microglial activation in brain parenchyma, creating an inflammatory context
that may exacerbate BBB permeability [65,66]

e  Changes in the expression and function of P-glycoprotein [67] and other transcellular
transporters (transferrin receptor (TfR), glucose transporter-1 (GLUT-1), insulin recep-
tor (IR), and low-density lipoprotein receptor (LDLr)), which may impact the access of
neuropsychiatric drugs and other promising pharmacological tools (e.g., nanoparticles,
viral vectors) to the brain parenchyma through the BBB, as proposed for the treatment
of neurological /neurodegenerative diseases [68,69].

Furthermore, the breakdown of the glymphatic system, mainly described in neu-
rodegenerative diseases, is currently under investigation in psychiatric research due to its
relevance to neuroinflammation and BBB permeability [70].

1.3. The Intestinal Barrier in Psychiatric Diseases
1.3.1. The Intestinal Barrier in Health and Disease

Besides its digestive and absorptive roles, the gastrointestinal tract exerts an effective
but dynamic barrier function between the mucosal immune system and the vast array of mi-
crobial and alimentary antigens present in the intestinal lumen. Central to this barrier is the
intestinal epithelial cells (IECs), which play vital roles both in generating immune tolerance
and orchestrating effective innate and adaptive immune responses. The intestinal barrier
encompasses not only IECs but also a variety of non-cellular elements including mucin,
antimicrobial peptides, secretory immunoglobulin A (sIgA), and intercellular junction
molecules between adjacent IECs [71,72].

Inflammatory cytokines, such as interferon gamma (IFN-y) and tumor necrosis factor
alpha (TNF-«), can influence the anatomy and function of intercellular junctions [73], with
a subsequent increased barrier permeability. This inflammation-associated dysfunction
of the intestinal barrier can result in the translocation of commensal microorganisms and
microbial products to the lamina propria, lymphatic vessels, and portal venous system. This
translocation may trigger and perpetuate local and even systemic inflammatory processes.
As a matter of fact, increased intestinal permeability is an early pathophysiological event in
humans [74] and experimental [75] inflammatory bowel disease (IBD).

Additionally, experimental models of physical and psychological stress have demon-
strated disruption of intestinal tight junctions, assuming their direct responsibility on the
increased intestinal permeability observed in stressed laboratory animals [76]. In this sense,
stressful events could trigger or modify the clinical course of IBD [77]. Moreover, the
prevalence of psychiatric symptoms in IBD patients is substantial, with anxiety estimated
to affect one-third and depression to one-quarter, especially those with active disease [78]

1.3.2. Intestinal Barrier Dysfunction in Psychiatric Diseases

Despite considerable efforts dedicated to studying the relationship between in-
flammatory balance and psychiatric pathology, there remain significant gaps in our
understanding. Firstly, genetic vulnerability itself is insufficient for the onset of these
diseases, suggesting the relevance of epigenetic changes induced by environmental
factors, including inflammation. Secondly, the inflammatory response is nonspecific;
several stimuli can trigger similar alterations in different psychiatric diseases, with slight
nuances depending on whether it occurs in an early or chronic stage [79]. Thirdly, exten-
sive longitudinal studies have failed to elucidate whether the activation of the immune
system and the inflammatory response are the cause or consequence of these mental
illnesses. Lastly, adjuvant anti-inflammatory therapies lead to moderate and non-stable
symptom improvement, as inflammation is a homeostatic mechanism whose blockade
could have counterproductive effects due to shared intra and intercellular pathways
between pro- and anti-inflammatory mechanisms [80,81].

The origin of neuroimmune alterations in psychiatric diseases remains elusive. Epi-
demiological evidence suggests that peripheral immune alterations caused by circulating
endotoxins through leaky internal barriers, including the intestinal barrier, could initi-
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ate an immune/inflammatory cascade in the brain, leading to structural or functional
brain damage. This low-grade inflammation status, not an evident infection, seems
a common factor in chronic diseases such as MDD and SZ [82]. At least in the initial
years of the disease, stress is a prominent driving factor associated with inflammation in
these pathologies. Other contributing factors include smoking, poor hygiene, diet, and
metabolic changes induced by the disease or medications. However, another immune
system mediator might play an important role in driving this inflammatory phenotype
in psychiatric disorders: endotoxins.

Leaky gut and subsequent bacterial translocation have been identified clinically
in MDD and SZ [83,84]. Recent research described different bacterial genera in fecal
samples from MDD patients [85]. In SZ, leaky gut was significantly associated with
a negative phenotype [86]. Stress-based experimental models of MD and SZ reported
increased colony-forming units (CFUs) in tissues adjacent to the colon and elevated levels
of LPS and LBP in plasma [87]. Structural and functional studies demonstrated that stress
induces disruption of the intestinal barrier [39,88], and LPS from E Coli was observed to
interact with innate immune receptors, such as Toll-like receptors (TLRs) expressed in
brain areas [89]. Pharmacological and genetic studies using knockout mice indicate a role
for endotoxins in depressive-like behaviors, identifying Gram-negative, Gram-positive,
and anaerobic genera associated with bacterial translocation [39,87].

Several mechanisms have been proposed for the contribution of bacterial transloca-
tion to neuroimmune alterations in the CNS [90]. Peripheral proinflammatory cytokines
associated with leaky gut may communicate with the brain via (a) the neural pathway,
involving systemic cytokines directly activating primary afferent nerves (mainly the
vagus); (b) the humoral pathway, through the choroid plexus and circumventricular
organs (CVOs), which lack an intact BBB, allowing circulating cytokines to enter into
the cerebral parenchyma through volume diffusion and elicit downstream signaling
events important in altering brain function; (c) the cellular pathway, where systemic
proinflammatory cytokines activate endothelial cells, leading to the activation of adjacent
perivascular macrophages, which in turn activate microglia [91]. Additionally, LPS or
other bacteria components from the gut can gain access to the circulation and directly
invade the brain through a more permeable BBB or signal through leptomeningeal cells.
Those cells express TLRs for LPS, and the released proinflammatory cytokines activate
microglia, evoking neuroinflammation.

2. The Sphingosine-1-Phosphate (S1P) Metabolism and Signaling

Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid that plays a crucial role in
the immune system. It is widely expressed throughout the body and is involved in immune
activation and regulation of cellular trafficking [92]. In addition to its immunological
functions, S1P also influences other essential cellular processes, including barrier integrity,
angiogenesis, and proliferation, through its synthesis in platelets, erythrocytes, vascular
endothelial cells, and hepatocytes [93].

Many of the S1P actions are mediated through “inside-out signalling” wherein it
acts as a ligand for a group of cell surface receptors belonging to the G-protein-coupled
receptors (GPCRs) superfamily. S1P is transported to the extracellular milieu by specific
proteins, such as sphingolipid receptor or spinster 2 (Spns2) [94], ATP-Binding cassette
(ABC) transporters Al (ABCA1) and C1 (ABCC1) [95,96], and major facilitator superfamily
transporter 2b (Mfsd2b) [97]. These mechanisms allow S1P to exert its diverse effects on
cellular responses and physiological processes throughout the body.

2.1. S1P Metabolism

Numerous studies have evinced the significance of phospholipids and their metabo-
lites in various pathological conditions, including cardiovascular disorders, oncogenesis,
and inflammatory diseases such as multiple sclerosis (MS) and IBD [97-100]. Among lipids,
sphingolipids hold particular importance, characterized by the presence of sphingosine as
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their common base, which can be synthesized de novo or derived from a complex lipid hy-
drolysis pathway [101]. Ceramide (CER) plays a pivotal role in sphingolipid metabolism as
the precursor of sphingosine, catalyzed by ceramidases [99]. CER and S1P exhibit opposing
functions and the establishment of a CER/S1P rheostat is crucial for maintaining S1P gradi-
ents necessary for immune cell migration processes [102]. In humans, five ceramidases have
been identified: acid ceramidase, neutral ceramidase, and alkaline ceramidase 1, 2, and
3, encoded by five different genes (ASAH1, ASAH2, ACER1, ACER2, and ACER3) [103].
Lastly, sphingosine kinases (Sphks) phosphorylate sphingosine to form S1P [104].

Of note, S1P synthesis is a complex mechanism characterized by its compartmen-
talization in different subcellar spaces due to its hydrophobic nature, which limits its
metabolism to local enzymes. Consequently, S1P can exhibit diverse signaling properties
depending on its cellular location [105]. The specific localization of S1P synthesis within
distinct subcellular compartments gives rise to a complex network of vesicular and active
protein mechanisms that regulate the transport of S1P across these compartments. As S1P
is synthesized and localized in specific organelles, such as the endoplasmic reticulum (ER)
and Golgi apparatus, it undergoes specific enzymatic modifications and interactions with
other molecules before being transported to its intended target sites. These modifications
and interactions can further regulate the signaling properties of S1P and contribute to its
diverse cellular effects. Notably, in various tissues, intracellular SIP concentrations are
maintained at low levels through rapid degradation facilitated by the S1P lyase (SGPL1)
enzyme present in the ER. However, in contrast to this degradation pathway, S1P can
also be transported out of the cell through specific transporters, enabling it to exert effects
outside the cell [106].

2.1.1. S1P Synthesis Enzymes

To date, two distinct Sphk isoforms have been identified: sphingosine kinase 1 (Sphk1)
and 2 (Sphk2) [107,108]. Although the activity of both isoforms overlaps to some extent,
they differ in substrate specificity, temporal expression patterns during development, and
subcellular localization, suggesting their involvement in different cellular processes [109].
Both Sphk1 and Sphk2 are necessary for maintaining physiological levels of S1P, but they
play essential yet antagonistic roles.

Under proinflammatory stimuli, Sphkl translocates to the plasma membrane
to generate S1P as an intracellular messenger [105]. Notably, Sphk1 stimulates cell
growth and survival while suppressing apoptosis [110], and it is a key factor in main-
taining cellular homeostasis under stress conditions by interacting with protein kinase
R (PKR) [111].

Sphk1 is regulated “inside-out” by a complex array of post-transcriptional, epigenetics,
and post-translacional mechanisms that ultimately generate a pool of S1P [112]. Its primary
location is the cytosol, from where it translocates to the cell membrane through a process
mediated by the Ca?*-myristoil switch protein calcium and integrin-binding protein. Once
there, its activation takes place via phosphorylation of the Ser 225 by the action of the
extracellular signal-regulated kinase (ERK) [113]. The activation of Sphk1 is necessary for
its pro-proliferative and pro-survival signaling [114] and begins with the binding of anionic
lipids such as phosphatidylserine (PS), phosphatidic acid (PA), and phosphatidylinositols
(PIs) [115,116], as well as growth factors and cytokines [117,118].

In contrast to Sphk1, the functions of Sphk2 depend on its subcellular localization
and cell type. Sphk2 promotes apoptosis in the ER, regulates mitochondrial respiration
in mitochondria, modulates gene expression and telomere integrity in the nucleus, and is
present in the plasma membrane in cancer [119].

2.1.2. S1P Degradation Enzymes

The degradation of S1P is influenced by the cellular localization of specific en-
zymes involved in the process. S1P degradation occurs irreversibly due to the activity
of SGPL1 and reversibly by two S1P phosphatases, SGPP1 and SGPP2 [120]. SGPL1
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is located on the ER membrane, specifically facing the cytosolic side, and acts as an
important regulator of S1P levels. This enzyme catalyzes the breakdown of S1P into
hexadecenal and phosphoethanolamine, effectively reducing the intracellular concen-
tration of S1P [121]. Previous studies have shown that loss-of-function mutations in
SPGL1 result in the pathological accumulation of sphingolipid intermediates and lead
to apoptosis induction [122].

On the other hand, SGPP1 is located on the ER membrane, facing the cytosolic side,
while SGPP2 is located on the ER membrane, facing the luminal side [123,124]. Thereby,
SGPP1 and SGPP2 can modulate S1P levels by catalyzing the dephosphorylation of S1P,
converting it into sphingosine. These isoenzymes exhibit high specificity for sphingoid base
phosphates, although they are expressed in different tissues [125]. The phosphorylation-
dephosphorylation process allows for the dynamic regulation of S1P/CER and its down-
stream signaling.

Additionally, sphingosine can be converted back to CER by adding a fatty acid,
catalyzed by ceramide synthase, constituting the sphingolipid recycling pathway [126].
The sphingolipid recycling pathway helps maintain the balance of sphingolipid levels and
ensures the availability of ceramide for various cellular processes, including lipid signaling,
membrane maintenance, and apoptosis regulation [127].

2.2. S1P Signaling

Although sphingolipids are well-known components of cell membranes, they also
participate in both inter- and intracellular signaling. S1P, classified as an amphipathic
lysophospholipid, possesses a polar head and a hydrophobic chain, allowing it to be re-
leased from the plasma membrane and act as an intracellular mediator and a ligand for
S1P receptors (S1PR). Five isoforms have been described (S1PR1-5), belonging to the family
of G-protein-coupled receptors (GPCR) coupled to «io, xq, or «12/13 proteins [128-130].
Consequently, critical signaling molecules such as phospholipase C (PLC), ERK, phospho-
inositide 3-kinase (PI3K), and protein kinase B (Akt) are activated. Akt phosphorylates the
third intracellular loop of S1PR1-2, leading to the stimulation of Rac, a member of the Rho
family of GTPases [131]. These intracellular signaling events ultimately regulate processes
such as angiogenesis, immunity, directed cell migration, proadhesion, and vascular per-
meability regulation during inflammatory responses in the endothelium, all of which are
closely related to the scope of this review.

Numerous studies have demonstrated the crucial regulatory role of S1P in immune
responses [93], where its primary function is to orchestrate the dynamic trafficking of
lymphocytes and other immune cells, facilitating their migration into lymphoid tissue and
subsequent egress to the blood [132,133]. In the CNS, S1P influences microglial and astro-
cytic activity and promotes vascular integrity. Furthermore, it is involved in the production
of cytokines and chemokines through the indirect activation of TLR-4, contributing to the
maintenance of cerebral homeostasis. The participation of S1P has also been demonstrated
in inflammatory diseases including cancer and diabetes, in pathophysiological processes
such as atherosclerosis and osteoporosis, and even in chronic diseases, disorders, and
autoimmune diseases [134-136].

The knowledge about the functions of S1PRs is mainly based on the use (even at
the clinical level) of SIPR modulators, such as fingolimod, ozanimod, siponimod, and
others [137]. The mechanisms of action of these compounds may be complex, probably
acting through multiple S1PRs and different intracellular signaling pathways [137,138].
Their classical mode of action is functional antagonism, based on internalization and
subsequent degradation of SIPRs from the lymphocytes cell surface, preventing lym-
phocyte trafficking between the lymph node, blood, and CNS [139]. Furthermore,
these compounds can cross the BBB and are capable of modulating the expression
and signaling of S1IPRs expressed on endothelial cells and brain parenchymal cellular
populations [140].
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S1PR1-5 are expressed by various subtypes of innate immune cells. While SIPR1 is
expressed in most of these cells, SIPR2 is predominantly found in macrophages, eosinophils,
mast cells, and monocytes [141]. Additionally, SIPR3 and S1PR4 are also expressed in
neutrophils and dendritic cells [142]. Lastly, SIPR5 is present in circulating monocytes and
NK cells [143]. The detailed implications of SIPRs in the immune response and barrier
function will be further elucidated in the next section.

Figure 1 illustrates the metabolism and signaling of S1P.
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Figure 1. Sphingosine-1-phosphate (S1P) signaling and metabolism. Sphingosine kinase 1 (Sphk1)
primarily resides in the cytosol and gets activated by cytokines, leading to the phosphorylation
of Sphingosine (Sph) to generate S1P at the plasma membrane. Additionally, Sphingosine kinase
2 (Sphk2) phosphorylates Sph to produce S1P at various intracellular locations, such as the
endoplasmic reticulum (ER), mitochondria, and nucleus. Once synthesized, SIP is exported
from cells through a S1P transporter (SPNS2 protein or ABC transporter) and subsequently
binds to specific S1P receptors (51PRs). These receptors trigger downstream signaling pathways
in an autocrine or paracrine manner, known as inside-out signaling. Within the ER, S1P is
subject to degradation by S1P lyase or recycled for the synthesis of ceramide (CER) and complex
sphingolipids. Moreover, S1P can also be dephosphorylated by phosphatase 1 (SGPP1) and
2 (SGPP2), both located in the ER, to form Sph, which is also reused for CER synthesis. The
activation of S1PR1-5 initiates G-protein mediated signaling pathways that govern various cellular
processes, including migration, survival, morphogenesis, cell proliferation, immune trafficking,
dendritic cell/macrophage activation, inflammation, and endothelial barrier regulation associated
with the immune system, and barrier function. The figure was prepared using the Motifolio
Ilustration Toolkits (Motifolio Inc., Ellicott City, MD, USA). SMase, sphingomyelinase; CERase,
ceramidase; CER synthase, ceramide synthase.

3. S1P and the Immune System

As previously underscored, S1P signaling is essential in immune responses orches-
trating the egress of lymphocytes from lymphoid tissues to blood. In the late 1990s, the
new molecule FTY720 showed potent immunosuppressant activity leading to lymphope-
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nia in rats [144] through a mechanism later identified as S1P-dependent [145], with
S1PR1 playing a leading role [146]. These discoveries led to the emergence of FTY720,
named fingolimod, as the first S1P-based drug approved for treating MS [100]. The
proposed mechanism of action was, briefly, the retention of central memory T cells in
lymph nodes by CC-chemokine receptor 7 (CCR?) after the aberrant internalization of
S51PR1 caused by fingolimod. S1P levels are high in blood and lymph, helping immune
cells to reach the vasculature and stabilizing the vessels. Fine-tuned gradients of S1P
are critical for the exit and entrance of immune cells (not only T cells, but also B cells,
NK cells mainly through S1PR5, and others) from primary and secondary lymphoid
organs, and in nonlymphoid tissues. The precise mechanisms governing this traffic are
not fully understood and the available evidence has been exhaustively reviewed both
under physiological conditions [147] and after immune activation [148].

The expression patterns of SIPRs have emerged as key regulators in the inflam-
matory response. S1PR1 is almost ubiquitous being expressed in various cell types,
including peripheral immune cells, endothelial cells, astrocytes, microglia, neurons, and
to a lesser extent, oligodendrocytes [149]. Activation of SIPR1 on myeloid cells promotes
neuroinflammation [150]. For its part, SIPR2 is widely expressed in various immune
cells, including T cells, B cells, dendritic cells, macrophages, and natural killer (NK)
cells, indicating its involvement in modulating immune responses and inflammatory
processes. While SIPR2 predominates in proinflammatory cells, SIPR1 is also upregu-
lated during the resolution phase of inflammation, facilitating macrophage migration
from the inflammatory site and promoting the resolution process [151]. Both S1PR1
and S1PR2 signaling seem crucial for establishing and maintaining endothelial barrier
function [152,153]. However, controversial data point in the opposite direction under
specific circumstances, as discussed later.

S1PR3 is expressed in various cells and tissues, including endothelial cells, smooth
muscle cells, neurons, glial cells, and cells of the immune system, such as T lymphocytes
and dendritic cells. Under proinflammatory conditions, it can promote the migration
of mature dendritic cells and mediate the chemotaxis of macrophages, neutrophils, and
monocytes, driving leukocyte movement and recruitment to the site of inflammation [154].
Additionally, S1PR3 induces bactericidal action in macrophages through the production of
reactive oxygen species (ROS), thereby enhancing the immune response [155].

S1PR4 is specifically expressed in lymphoid tissues and immune cells, including lym-
phocytes, dendritic cells, and macrophages. Its sole expression in these cell types suggests
its relevance in immune responses and inflammatory processes, as it has been associated
with cancer, autoimmune diseases, and IBD [92]. However, there is limited and controver-
sial information about the mechanisms controlled by SIPR4. S1PR4 may participate in the
release of proinflammatory cytokines in activated macrophages and mediate the activation
and maturation of dendritic cells [156], but also its absence exacerbates M1 polarization
and pulmonary inflammation [157].

S1PR5 is expressed in NK cells and patrolling monocytes. Similarly to S1PR4 and
despite being one of the ozanimod targets, SIPR5 has been less studied. Available evidence
points to its role in regulating NK cell migration, guiding their exit from the bone mar-
row and facilitating their circulation in the bloodstream [158], as well as in the egress of
monocytes from the bone marrow and the inhibition of phagocytosis [159].

Beyond its peripheral participation in the immune cell migration toward the vas-
culature, S1P also regulates inflammation and immune events in the CNS. Most cell
types in the CNS (neurons, microglia, astrocytes, oligodendrocytes, and BBB cells)
express S1P receptors, and different S1P-based drugs have shown direct effects on
them [160,161]. S1P, a lipid that easily accesses the CNS through the BBB, is the most
enriched lipid in the CNS and plays an indubitable role in development. However,
the neurotoxic/neuroprotective actions of S1P are still under debate, especially under
disease conditions [162]. Some of the identified S1P pathways in the CNS are related to
immune modulation, particularly, neuroinflammation. Glial activation is one of the
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main features of neuroinflammation and S1P may drive it. SIP accumulation has been
shown to activate microglia in neural SPGL1 ablated mice through S1PR2 [163], in the
microenvironment of degenerated intervertebral discs [164], and in glioma progres-
sion [165]. Both fingolimod and siponimods boost the expression of anti-inflammatory
phenotypes and genes in microglia [166,167] and astrocytes [168]. Overexpression of
S1PR1 is present in reactive astrocytes after fingolimod discontinuation [169] whereas
this drug inhibits astrogliosis and its associated neuroinflammation in mice [170].
S1PRs are also involved in CXCL1 release from astrocytes [171] and CXCL5 from astro-
cytes and microglia after TLR4 stimulation [172]. All S1PR1-5 receptors, except S1PR4,
have demonstrated participation in the activation of microglia and/or astrocytes, lead-
ing to neuroinflammation [173]. Nevertheless, their signaling is complex, as previously
highlighted, and there are still controversial data that fuel an active debate about their
exact neuroimmune mechanisms.

Beyond receptors, different pro/anti-inflammatory effects have been associated with
metabolic S1P enzymes. Sphk1 overexpression plays a crucial role in the development of in-
flammatory and immune-related diseases, such as inflammatory bowel disease, Alzheimer’s
disease, or hypertension. As a result, the antagonization of Sphk1 by Sphk1 or Sphk1/2
inhibitors is under investigation as a novel therapeutical alternative [174]. On the other
hand, Sphk2 produces its own pool of S1P depending on its subcellular localization, which
has been implicated in protection against ischemic injury, macrophage polarization, or
regulation of cytokine expression [115]. However, there is scarce and controversial informa-
tion on CNS diseases. Although the exact mechanisms behind the cytosolic/nuclear shift
of Sphk2 remain elusive, a study suggests a neuroprotective activity of cytosolic Sphk2 in
Alzheimer’s disease, as there is an inverse correlation between its cytosolic expression and
amyloid deposits in the frontal cortex and hippocampus of AD patients, coinciding with
translocation to the nucleus [114].

Consistent with the previously discussed functions of S1P, SGPL1 activity has been mostly
associated with beneficial effects due to its anti-inflammatory properties [163,175-177] but it is
also linked to deleterious effects on barrier function [178]. This ambivalent role depends
on the cell type [179]. Similarly, the expression pattern of SGPP1 and SGPP2 in specific
cell types may contribute differentially to the inflammatory context. SGPP2 activity is
primarily upregulated during inflammation in many cells, such as endothelial cells and
neutrophils [124]. In IBD models, SGPP2~/~ mice showed less severe dextran sodium
sulfate (DSS)-induced colitis together with the suppression of inflammation and intestinal
cell apoptosis, leading to a healthier mucosal barrier. On the other hand, SGPP1 deletion
implies a higher proinflammatory response after DSS-induced colitis [180].

The significance of S1P in bridging the activity of the innate and adaptive immune
systems, coupled with its modulation of barrier functions discussed below, renders it a
compelling target for controlling inflammation and the immune response in pathologies
associated with immune dysfunction and barrier permeability, such as psychiatric diseases
and IBD. Figure 2 presents an integrated view of the involvement of S1P signaling and
metabolism molecules in these processes.
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Figure 2. Sphingosine-1-phosphate (51P) modulates the immune response and barrier function. S1P
is a pivotal modulator of immune responses and barrier integrity. With elevated concentrations in
the lymph and blood, S1P orchestrates immune cell trafficking from lymph nodes and contributes
to inflammatory processes in several organs, including the central nervous system (CNS) and the
gut, which are both relevant to psychiatric diseases. Five receptors (S1PR1-5) displaying distinct
expression pattern in immune, CNS, and barrier-related cells, transduce the S1P signaling. Up arrows
indicate an increase in the immune response or barrier function, and down arrows a decrease. Effects
related to harmful situations are shown in red, and protective are in green. S1PR1, 2, 3, and 5 elicit
inflammation and immune activation, while S1PR4 has shown ambivalent effects. The activity of
S1PR1, 4, and 5 promotes a healthy barrier function, whereas S1IPR3 exerts opposing effects, and
S1PR2 yields controversial results. Similarly, SIP metabolism associated with inflammation includes
the harmful activity of sphingosine kinase 1 (Sphk1) and sphingosine phosphatase 2 (SGPP2), and
the suppression role of sphingosine kinase 2 (Sphk2), sphingosine phosphatase 1 (SGPP1), and S1P
lyase 1 (SGPL1). Regarding protective effects on barriers, Sphk1 and 2 activation promote a healthier
barrier, while SGPL1 is related to barrier dysfunction. The figure was prepared using the Motifolio
Mlustration Toolkits (Motifolio Inc., Ellicott City, MD, USA).
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4. S1P Signaling in Blood-Brain and Intestinal Barrier Functions
4.1. S1P Signaling in BBB Function

Increasing preclinical (in vitro and in vivo) and clinical evidence supports the regula-
tory role of S1P signaling pathways on the structure and function of the BBB in pathophysi-
ological conditions, especially in neurological pathologies such as stroke or traumatic brain
injury (TBI) [181].

S1P possesses three carrier proteins: albumin, apolipoprotein M (ApoM), and
apolipoprotein A4 (ApoA4) [182]. The specific binding of S1P to these carriers could
differentially affect S1P release and signaling [182]. Thus, several findings have shown that
ApoM-bound S1P regulates BBB paracellular permeability and vesicle-mediated transport
in mice brain vasculature [183], and high-density lipoprotein (HDL)-S1P is more effective
in enhancing endothelial barrier function via SIPR1 compared to albumin-bound S1P [184].

The five G-protein-coupled S1P receptors (S1IPR1-5) have selective expression profiles
in the cellular types constituting the BBB and in those within the brain parenchyma (neu-
rons, oligodendrocytes, and microglia), which can also influence BBB function [149]. SIPR1
stimulation in endothelium leads to the activation of the Rac pathway, enhancing barrier
function by increasing cadherin distribution to the membrane and strengthening adherens
junctions, TJs, and cytoskeletal stabilization [181,185,186]. In this vein, several studies
have demonstrated the ability of fingolimod to reduce basal P-glycoprotein activity in
isolated rat brain capillaries through a mechanism related to the S1P transporter multidrug
resistance-associated protein 1 (Mrp1) [187,188]. P-glycoprotein is an ATP-driven drug
efflux pump that prevents the entry of drugs across the BBB. Fingolimod and other S1P
modulators could be attractive tools to improve drug delivery to the brain. The transporters
Mrp1 and Spinster homolog 2 (Spns2) are essential for the effects of SIP on BBB integrity,
ensuring a proper bioavailability of S1P in the vascular niche [189].

In a complementary mechanism, recent studies suggest that CYM-5442, a novel and
selective modulator of SIPR1, maintains the integrity of the BBB by restricting vesicle
transcytosis after TBI and during acute ischemic stroke in rodents [190,191].

The protective role of these compounds in neurological /neurodegenerative diseases
may also be related to their SIPR1-dependent immunomodulatory actions on parenchymal
glia and neurons [192-194].

Some authors have reported controversial data regarding the role of SIPR1 in the
pathophysiology of stroke. Specifically, Gaire et al. found that the oral administration of
AUY954, a selective functional antagonist of SIPR1, ameliorates brain infarction, neuro-
logical deficit score, and neural cell death in a transient focal cerebral ischemia model in
rats [195]. Similarly, Mandeville et al. reported that fingolimod does not reduce infarction,
brain swelling, hemorrhagic transformation, and behavioral outcome after focal cerebral
ischemia in mice [196]. Further scientific efforts are needed to disentangle the precise
pharmacological profile and intracellular signaling pathways activated by the different S1P
modulators in the widest possible range of experimental conditions.

On the contrary, the isoform S1PR2 in endothelium has detrimental effects, increas-
ing BBB permeability, oxidative stress, and stimulating inflammation and subsequent
leukocyte trafficking in several pathological scenarios [197,198]. Genetic or pharmacolog-
ical inactivation of SIPR2 prevents BBB disruption and microgliosis in the experimental
autoimmune encephalomyelitis (EAE) animal model of MS [199], and microglial activa-
tion and M1 polarization following experimental cerebral ischemia through an ERK1/2
and JNK-related mechanism [200]. The expression of SIPR2 in pericytes is regulated by
microRNA-149-5p in a crucial mechanism related to the increase in BBB permeability pro-
duced after transient middle cerebral artery occlusion in rats [201]. It is worth noting that
there is the sexually dimorphic expression of SIPR2 in the CNS [202], which underlies
the increased female susceptibility to BBB dysfunction and worsened symptomatology
during autoimmune diseases [203].

Increasing evidence suggests the role of SIPR3 as a pathogenic mediator in certain
experimental conditions. Thus, the upregulation of SIPR3 and activation of RhoA-related
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signaling in astrocytes induce inflammation [204], and its activation can promote endothe-
lial cell contraction, disrupting vascular barriers [205]. Furthermore, the administration
of CAY10444, an S1PR3 antagonist, reduces BBB injury via the downregulation of the C-C
motif chemokine ligand 2—C-C motif chemokine receptor 2 (CCL2-CCR?2) axis, p-p38
mitogen-activated protein kinase (MAPK), and intercellular adhesion molecule 1 (ICAM1),
and the upregulation of ZO-1 following acute intracerebral hemorrhage in in vivo and
in vitro rat models [206]. CAY10444 also prevents M1 microglial activation after transient
focal cerebral ischemia through a mechanism related to the phosphorylation of ERK1/2,
p38 MAPK, and Akt [207].

S1PR4 is mainly expressed in immune cells, but there may exist some expression in
the brain. Recently, an overall barrier-protective function of endothelial SIPR4 receptor has
been suggested both in vitro and in vivo [208].

Seminal studies showed that the activation of SIPR5 with a selective agonist (azacyclic
analogue of FTY720) promotes BBB integrity and reduces inflammation and transendothe-
lial migration of monocytes in cultures of human brain endothelial cells [209].

Ozanimod (RPC-1063) is a newly developed compound that can selectively modu-
late SIPR1/5, reducing the dysfunction of the BBB and exerting neuroprotective actions
following intracerebral hemorrhage in mice [210]. Similarly, the use of A-971432, a
selective S1PR5 agonist, preserves BBB integrity and activates pro-survival pathways,
such as brain-derived neurotrophic factor (BDNF), Akt, and ERK, in an animal model of
Huntington’s disease [211].

Another approach to studying the effect of S1P on the BBB is the genetic or phar-
macological modulation of other members of the S1P signaling besides receptors. Thus,
Sphk1 has been involved in endocytic membrane trafficking, ensuring the conversion of
sphingosine to S1P [212]. The other isoform, Sphk2, is necessary to regulate junctional pro-
tein expression and BBB protection in hypoxic preconditioning-induced cerebral ischemic
tolerance in rats [213]. The histone methyltransferase Smyd2-dependent methylation of the
Sphk/S1PR signaling pathway produces BBB disruption in experimental ischemic stroke
in rats [214]. The preservation of S1P levels produced by the downregulation of SGPL1
enhances barrier function in human cerebral microvascular endothelial cells following an
inflammatory challenge [178]. Similarly, the administration of fingolimod reduces SGPL1,
increasing the levels of S1P and reversing BBB leakiness during EAE [215].

4.2. S1P Signaling in Intestinal Barrier Function

As previously outlined, the interaction between S1P and its receptor S1PR1 regulates
lymphocyte trafficking from the spleen and lymph nodes into the systemic circulation.
Modulation of S1PR1 leads to the reversible sequestration of specific lymphocyte subsets
in lymph nodes, resulting in decreased peripheral circulating lymphocytes and reduced
tissue inflammatory infiltrates. While the direct relationship between the S1P pathway and
intestinal barrier function in vivo lacks sufficient evidence, some experimental data suggest
its possibility, although with controversial results.

For instance, some studies have demonstrated that S1P can increase levels of
E-cadherin, both in cellular amounts and at the cell-to-cell junctions, promoting im-
proved barrier integrity in cultured IECs [216]. Additionally, S1P signaling through
the S1PR2 receptor and Rho kinase (ROCK) has been implicated in IEC extrusion, a
crucial phenomenon for maintaining homeostatic cell numbers in the intestine and,
consequently, effective barrier function under physiological circumstances [217]. This
signaling pathway has also been associated with interactions between IECs and T cells
during experimental colitis [218].

Furthermore, treatment with a selective SIPR1 agonist has been shown to enhance
intestinal barrier function in IL-10~/~ mice, a well-recognized model of chronic colitis,
as evinced by restoration of TJ protein expression (occludin and ZO-1) and suppression
of epithelial cell apoptosis [219]. Taking advantage of the Sphk2~/~ mice, our group has
recently shown that experimental stress induces colonic inflammation by modulating S1P
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pathways—it increases S1P in the colon possibly due to a downregulation of Sphk2 and its
degradation enzymes—leading to dysregulated innate and adaptive immune responses
and enhanced intestinal permeability. Moreover, Sphk2~/~ mice presented a cytokine-
expression profile towards a boosted Th17 response, lower expression of claudins, and
structural abnormalities in the colon [88].

Further research is currently underway to understand the role of the S1P pathway in
endothelial barrier function in the gut. It is known that the SIPR1 receptor is expressed
by endothelial cells in the intestinal vasculature [220,221], and its genetic deletion in mice
increases colonic vascular permeability [220]. Continued investigations are necessary to
fully elucidate the intricate mechanisms and implications of S1P signaling in maintaining
intestinal barrier function in health and disease.

5. Evidence of S1P Role in Psychiatric Diseases
5.1. S1P in MDD

MDD is one of the first sources of disability in terms of Disability Adjusted Life Years
(DALYs) and some projections foresee that it will be the main cause of disability and
one of the leading sources of morbidity by the year 2030 [222]. Importantly, these severe
predictions are prior to the COVID-19 scenario, in which the levels of stress and its possible
effects on mental health are still under scrutiny.

The etiology of MDD is still not fully understood. However, one thing that seems
clear is that its pathophysiology goes far beyond the classical monoaminergic hypothe-
ses involving neurotransmitter imbalances of serotonin (5-HT), noradrenaline (NA), and
dopamine (DA). Inflammatory processes have been linked to MDD development and
depressive-like symptoms [30], with patients frequently displaying high levels of immune
dysfunction biomarkers, and inflammation being associated with the clinical severity of
mood disorders [223,224]. The relationship between the immune system and MDD raises
questions about its origin and mechanisms and S1P emerges as a molecule worth studying,
given its proinflammatory actions through immune cell recruitment [129].

One relevant process is to identify how peripheral inflammatory parameters with
an important size, such as cytokines, can infiltrate the CNS through the BBB. Even more,
bacteria from the own patients’ microbiota have been alluded to as inductors of the inflam-
matory response in MDD as a consequence of the malfunction of some barriers, such as the
intestinal barrier, in an already mentioned phenomenon called leaky gut [84,85]. S1P plays
a critical role in upholding both the integrity of the BBB and the intestinal barrier, making
them a plausible link to MDD [225].

Animal models, mainly using stress-based models and particularly chronic mild stress
(CMS), have shed light on the potential role of the S1P pathways in MDD pathophysiology.
These models are well-described and commonly employed to investigate MDD pathological
basis and screen for new antidepressants [226]. In a recent article, Guo et al. [227] have
shown that the pharmacological blockage of SIPRs in the CMS model alleviated depressive-
like behavior, hippocampal damage, inflammation, and oxidative stress due to NLRP3
inflammasome activation, highlighting the involvement of the S1P pathway, particularly
its actions on the immune system, in MDD etiology.

A study investigating the connection between gut microbiome-derived lactate and
anxiety-like behaviors in chronically stressed rats has found that SIPR2 protein expression
in the hippocampus is lower in stressed rats, negatively correlating with symptom sever-
ity [228]. Furthermore, this study shows that SIPR2 reduces the TNF-« increased levels
after stress exposure, suggesting the potential role of SIPR2 in mediating stress-related
psychiatric phenotypes.

Another research has also focused on the microbiota and its impact on depressive-like
behavior, but in this case in the possible translocation of oral microbiota through the BBB,
using a preclinical model combining periodontitis and CMS in rats. This study identified
variations in the expression of significant mediators involved in the BBB integrity, neuroin-
flammatory parameters, and S1P signaling modulation in the frontal cortex [229]. Once
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more, these results suggest a connection between the S1P pathway and MDD, particularly
through its actions on BBB integrity and the immune response.

In a significant study including animal and patient samples, it has been revealed that
experimental overexpression of SIPR3 in the medial prefrontal cortex (mPFC) led to a
resilient phenotype, whereas knock-down of S1PR3 resulted in vulnerability with higher
anxiety- and depressive-like behaviors, effects mediated, once again, by TNF-« [230].
Importantly, this study also observed decreased SIPR3 mRNA expression in the blood
of war veterans with posttraumatic stress disorder (PTSD), and its expression negatively
correlated with symptom severity. All in all, this research strongly suggests that SIPR3
might be a regulator of stress resilience and underscore sphingolipid receptors as valuable
substrates of importance to stress-related psychiatric disorders.

The existence of patients who are refractory to antidepressant treatments is a significant
concern in MDD research. Thus, it is crucial to examine factors that regulate recovery. In this
sense and linking once again TNF-« and the S1P pathway in depression models, enhancing
endothelial barrier integrity through S1PR stimulation or TNF-« inhibition contributes to
the recovery from prolonged learned helplessness depression-like behavior in mice [231].

In summary, the vast majority of studies about S1P and depression have been con-
ducted in animal models. While there are relatively few articles about the role of S1P in
MDD, all available evidence points towards a connection between MDD and S1P through
its proinflammatory actions and its role in maintaining the integrity of various physiologi-
cal barriers. Particularly, there appears to be a clear link between the actions of TNF-«, a
proinflammatory cytokine increased in both animal models and patients with MDD [232],
and the S1P pathway. Moreover, connections among other immune parameters involved in
neuroinflammation and barrier integrity, and S1P are rather likely.

5.2. S1P in Neurodevelopmental Disorders

Neurodevelopment encompasses the proliferation and maturation of neural cells to
establish proper neural circuits for vegetative and cognitive functions. This phenomenon
involves processes like cell migration, plasticity, metabolic changes, and myelination,
specific to certain cells and time windows in the CNS [233]. Neurodevelopment requires
a controlled microenvironment, where glial cells and specifically microglia play crucial
roles [234,235]. Disturbances during this process increase the risk for neurodevelopmental
disorders, including SZ, ASD, and attention deficit/hyperactive disorder (ADHD) [236].

5.2.1. S1IP in SZ

SZ is a severe mental disorder with a multifactorial etiology characterized by psychotic
episodes that usually emerge during late adolescence or early adulthood [237]. The SZ
pathophysiology may involve S1P signaling in four main aspects: myelination, neurotrans-
mitter release, synaptic pruning, and BBB function. The developmental risk factor model
for SZ suggests that genetic disturbances, mainly related to innate immunity and synaptic
proteins, coupled with environmental insults, such as perinatal stress or cannabis exposure,
interact for the onset of the disease. The establishment of neural ensembles, functional units
of the CNS, relies on the adequate structure and function of the cells. Myelination is crucial
for the optimal conduction of nerve signals, and oligodendrocytes oversee this process
in the CNS. The loss of white matter (rich in myelin) is a consistent finding in SZ [238],
suggesting potential vulnerability and dysfunction of oligodendrocytes during neurode-
velopment, which may increase SZ risk [239]. S1P signaling plays a fundamental role in
myelin production [240], and alterations in S1P could be associated with white matter
changes in SZ. Studies in patients have reported decreased S1P levels and a ratio imbalance
in favor of S1P precursors, sphingosine and ceramide, in the corpus callosum, which may
impact on apoptosis and cell-cycle arrest [241]. Additionally, increased transcript levels of
S1P receptors have been observed [242].

Excessive synaptic pruning during neurodevelopment is another disruption linked
to the increased risk of SZ. The complement system, a part of innate immunity, plays a
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critical role in synapse elimination and, consequently, in neural circuit maturation. Genetic
variations in the complement system have been associated with SZ, leading to overex-
pression of complement component 4 (C4), oxidative/nitrosative stress, and excessive
synaptic pruning in corticolimbic regions [242-244]. Synaptic bouton elimination depends
on labeling by complement components Clq and C3. C1q/C3 complex interacts with the
C3 receptor (C3R), highly expressed in microglia, and these cells engulf portions of the
synaptic bouton in a phagocytosis-related phenomenon [245]. Complement labeling on
synapses depends on various factors, including weak or atrophied synapses [246]. Al-
though the specific role of S1P in the pruning hypothesis of SZ is not well understood,
existing evidence suggests that S1IP may be involved in this process. S1P is essential for glu-
tamate exocytosis in presynaptic terminals by modulating synapsin I distribution [247], and
decreased synapsins have been detected in cortical regions in SZ [248]. Thus, lower levels
of S1P might be associated with impaired glutamatergic transmission and weak synapses,
increasing the likelihood of elimination. S1P has also been implicated in dopamine release
in rodents [249], potentially influencing mesolimbic dopaminergic tone and the core clinical
feature of SZ, psychosis [250]. These findings suggest that S1P and its receptors could be
potential therapeutic targets for SZ.

Astrocytes, which are part of the BBB and rich in Sphks and S1PR [206,251], have
been reported with varied density, activity states, and genomics in SZ [252]. These cells
are sensitive to inflammatory stimuli, and there are multiple subtypes of astrocytes with
different characteristics and functions depending on the brain region [253]. These features
can explain the heterogenous information about astrocytes in SZ. Studies have reported
increased BBB permeability in temporal lobe structures, including the hippocampus, in
postmortem samples of SZ [254]. As S1P modulates BBB permeability [181], further investi-
gations are needed to explore the potential relationship between S1P and BBB dysfunction
in SZ.

5.2.2. S1P in Autism Spectrum Disorders

Autism spectrum disorders (ASD) are another neurodevelopmental disorder with
a strong genetic basis, characterized by abnormal brain development and a range of
behavioral characteristics, including social isolation, language and motor skill delays,
impulsiveness, hyperactivity, and sometimes seizures, irritability, and agitation [255].

S1P has been proposed as a biomarker for aiding in ASD diagnosis and disease
status, as serum S1P levels are reduced in patients compared to controls [256]. However,
S1P levels seem unaltered in the prefrontal cortex, a region with impaired function in
ASD [257]. Additionally, single nucleotide polymorphisms (SNPs) in the Sphkl gene have
been associated with ASD in females [258].

Animal models of ASD have shown lower hippocampal and serum S1P and SphK lev-
els together with memory impairments in rats exposed to valproic acid during gestational
age [259,260]. Sphk/S1P-related pathways may also be related to dendritic spine pathology
in the corticolimbic system, a core pathophysiological characteristic in ASD [261].

5.2.3. S1P in Attention Deficit Hyperactivity Disorder

Attention deficit hyperactivity disorder (ADHD) is a mental disorder characterized
by symptoms of lack of attention, impulsivity, and hyperactivity, typically observed from
childhood to adulthood. Multiple neurotransmitter systems, including the dopaminergic
and noradrenergic, are dysfunctional in ADHD [262]. Furthermore, studies in patients
diagnosed with ADHD have reported genetic alterations related to ceramide synthesis
and, consequently, to S1P [263]. Interestingly, plasma levels of sphingomyelins were found
to be reduced in children with ADHD [264], while S1P plasma levels were found to be
upregulated in adults [265]. These findings suggest that there may be dynamic alterations
in ceramide metabolism throughout the course of the disease and highlight the potential
role of these molecules as potential biomarkers for diagnosing and assessing disease status
in ADHD.
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6. Current and Potential Drugs Targeting S1P in Psychiatric Diseases and IBD

Several compounds differentially target the isoforms of the S1PRs, having all in
common the functional antagonism of S1PR1 in immune cells through its internalization.
Among these drugs, fingolimod, siponimod, ozanimod, and etrasimod have garnered
attention in this review due to their actions. Fingolimod was the pioneering development,
displaying a broader receptor affinity with effects on S1PR1, 3, 4, and 5. Subsequent
compound designs have emphasized enhancing specificity while minimizing adverse
side effects. Siponimod selectively targets SIPR1 and S1PR5, avoiding the activation of
S1PR3 [266], and ozanimod was developed later as a potent agonist of SIPR1 and 5, with
residual activity over the S1PR2,3, and 4 [267]. On the other hand, etrasimod acts as a full
agonist of SIPR1 and a partial agonist of SIPR4 and 5 [268]. Figure 3 illustrates the activity
of S1PR modulators on the different isoforms of the SIPRs summarizing the evidence
gathered in this review relevant to psychiatric diseases and IBD.

—

S1PR1

S1PR2

]

Fingolimod ATTENUATE PSYCHIATRIC

BEHAVIORS
DECREASE NEUROINFLAMMATION
Prevent the egress of immune cells from
lymph nodes
Anti-inflammatory effects on microglia
Anti-inflammatory effects on astrocytes
Inhibit astrogliosis

IMPROVE WHITE MATTER
MICROSTRUCTURE

Induce remyelination

Promote oligodendrocyte survival

Siponimod

IMPROVE PLASTICITY
Increase BDNF and spinogenesis

MODIFY BBB INTEGRITY
Reverse BBB leakiness
Reduce basal P-glycoprotein
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Prevent the egress of immune cells from
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Figure 3. Effect of sphingosine-1-phosphate receptor (SIPR) modulators on S1PR isoforms and
potential mechanisms in psychiatric and inflammatory bowel diseases (IBD). On the left, fingolimod
binds S1PR1/3/4/5, siponimod and ozanimod are agonists of SIPR1/5, and etrasimod is a potent
agonist of SIPR1 and a partial agonist of SIPR4/5. On the right, the potential biological processes
modulated by these sphingosine-1-phosphate (S1P)-based drugs. The figure was prepared using
the Motifolio Illustration Toolkits (Motifolio Inc., Ellicott City, MD, USA). BDNF, brain-derived
neurotrophic factor; BBB, blood-brain barrier; TJ, tight junction; IEC, intestinal epithelial cell.
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The primary aim of this section is to review the potential pharmacological applica-
tions of targeting S1P in the field of psychiatry. Currently, the previously mentioned S1PR
modulators (fingolimod, siponimod, ozanimod, etrasimod) together with ponesimod
are commercially available drugs for treating MS (a CNS pathology), while ozanimod
for managing ulcerative colitis (an intestinal disease). As a result, we have opted to
include pertinent information about S1P drugs in IBD, not only due to the approval
of ozanimod but also because of the previously emphasized significance of intestinal
barriers in psychiatric diseases.

6.1. S1P-Related Drugs for the Treatment of Psychiatric Diseases
6.1.1. S1P-Related Drugs for MDD

This is a relatively new area of research, and consequently, there are limited studies
concentrating on the effects of pharmacological modulation of the S1P pathway on the
symptomatology and clinical outcome of MDD. The main rationale for considering S1P-
related drugs as potential treatments for MDD lies in the presumed role of inflammation in
the MDD pathophysiology and the importance of the S1P pathway in maintaining barrier
integrity, as previously explained. Therefore, most studies covering this subject have been
conducted using animal models, with a particular focus on the immune response.

Many of these studies employ fingolimod, the first SIPR modulator approved for
treating MS. A previously mentioned recent study has provided theoretical support for S1P
receptor modulation in MDD treatment, demonstrating that fingolimod protects hippocam-
pal neurons from CMS-induced damage and lessens depressive-like behavior by inhibiting
neuroinflammation [227]. The improved symptomatology observed in the CMS rats in this
research was attributed to blocking the NLRP3 inflammasome in hippocampal microglia
and polarizing them to the M2 phenotype.

Another study employing a validated neuropsychiatric lupus model in mice has indi-
cated that fingolimod significantly attenuates depression-like behavior, leading to reduced
brain T cell and macrophage infiltration, and a significant decrease in cortical leakage of
serum albumin [269]. Additionally, astrocytes and endothelial cells from fingolimod-treated
mice showed lower expression of inflammatory genes. These findings further indicate
the potential of S1P signaling modulation as a novel therapeutic target for depressive
symptoms, particularly in the context of neuropsychiatric manifestations in patients with
lupus erythematosus.

While there are no specific studies examining the potential antidepressant effects of
fingolimod in patients with MDD, studies in patients with MS provide some evidence in
support of this beneficial action, as fingolimod is indicated for the treatment of MS and
patients with MS are at higher risk for MDD. Notably, studies investigating the fingolimod
effects on depressive symptoms in MS patients have shown an improvement in depressive
symptoms compared to other treatments for relapsing-remitting MS [270], underscoring
the potential antidepressant impact of S1P pathway modulation.

Other potential pharmacological approaches exist, although they have yet to be exten-
sively tested in patients with MDD. This would be the case with the functional inhibitors
of the acid sphingomyelinase (ASM), an enzyme whose activity is increased in patients
with MDD according to a pilot study [271]. ASM is a lipid metabolizing enzyme that
can be activated by proinflammatory cytokines (e.g., TNF-«, IL-1p3, IFN-«), leading to
the cleavage of sphingomyelin to ceramide, a precursor of S1P. Hence, ASM inhibition
has been proposed as a therapeutic approach for several pathologies due to its potential
antiapoptotic and neuroprotective effects [272].

6.1.2. S1P-Related Drugs for Neurodevelopmental Disorders

The pharmacological modulation of S1P-related pathways holds great promise as a
potential treatment for SZ. A recent study has shown that fingolimod exerts protective
effects on behavioral and inflammatory alterations induced by short-term exposure to
cuprizone, a novel psychosis mode [273]. Specifically, fingolimod prevented the activation
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of microglia, cytokine release, and infiltration of leukocytes in the CNS while alleviating
methamphetamine hypersensitivity.

Fingolimod has also demonstrated beneficial effects on white matter [274,275], improv-
ing white matter microstructure in an EAE rodent model [276] and in patients with impaired
pyramidal function [277]. Also, in vitro studies have further shown that fingolimod pro-
motes oligodendrocyte survival [278] and proliferation [279], as well as enhances precursor
cell mitogenesis and re-myelination [280,281]. These findings collectively suggest a hy-
pothetical mechanism for fingolimod in maintaining white matter integrity in SZ [282]
and ASD, given that impaired uncinate fasciculus (axons connecting limbic areas of the
temporal lobe structures with the prefrontal cortex) [283] and superficial white matter
development are consistent findings in ASD [284].

Fingolimod may also have a potentially beneficial effect on neurodevelopmental
disorders through its ability to increase BDNF [285], which can even stimulate spinogenesis
in vitro [286]. This effect can be relevant for diseases with dendritic spine pathology as
a core mechanism, such as SZ and ASD [287]. However, a preliminary study in patients
diagnosed with Rett syndrome, a genetic neurodevelopmental disorder that compromises
the adequate maturation of the nervous system, did not show improvement in symptoms
or metabolic and molecular markers with fingolimod treatment [285].

The SphK blocker SKI-II has shown promising effects in attenuating memory impair-
ments and stimulating hippocampal synaptic plasticity, autophagy, and cell surveillance-
related pathways in the valproic acid-induced ASD rat model [259]. Furthermore, SKI-II
has recovered behavioral and brain molecular impairments in BTBR T* I’cp1r3tf /] mice [288],
a strain commonly used to study ASD due to its Disc 1 (disrupted in SZ 1) gene deletion,
which is associated with an increased risk not only for ASD but also for multiple mental
diseases. These data suggest that the Sphk/S1P pathway could be a potential novel target
for ASD pharmacotherapy.

Table 1 presents a comprehensive compilation of both preclinical and clinical studies
providing compelling evidence of the potential involvement of S1P in psychiatric diseases.

Table 1. Evidence of sphingosine-1-phosphate (S1P) in psychiatric diseases.

Authors and Year

Type of Study Main Results

Major depressive disorder (MDD)

S1P signaling modulation, decreased

Martin-Hernéndez et al., 2023 [229] Preclinical (periodontitis + CMS) BBB-related proteins, and increased

neuroinflammation

Shan et al., 2020 [228]

S1PR2 was lower in the hippocampus,
Preclinical (CMS) negatively correlated with symptom severity,
and reduced TNF-« levels.

Corbett et al., 2019 [230]

S1PR3 in the medial-PFC was elevated in
resilient rats. S1PR3 was reduced in the blood
of PTSD patients

Preclinical (chronic social defeat)
Clinical (PTSD)

Cheng et al., 2018 [231]

Fingolimod and TNF-« inhibition enhanced
Preclinical (learned helplessness) BBB integrity and ameliorate
depressive behavior

Mike et al., 2018 [269]

Fingolimod attenuated depressive-like
Preclinical (neuropsychiatric lupus) behavior, neuroinflammation, and BBB
permeability

Hunter et al., 2016 [270]

Fingolimod improved depressive symptoms
Clinical (MS) compared to other treatments in
relapsing-remitting MS patients

Kornhuber et al., 2005 [271]

Acid sphingomyelinase (ASM), which
Clinical produces the S1P precursor ceramide, was
increased in MDD patients
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Table 1. Cont.

Authors and Year

Type of Study

Main Results

Neurodevelopmental disorders

Schizophrenia (SZ)

Li et al., 2023 [273]

Preclinical (cuprizone)

Fingolimod improved psychotic-behavior and
decreased neuroinflammation.

S1PR1 was higher in the dorsolateral-PFC of

Chand et al., 2022 [242] Clinical Type 2 SZ patients
Fingolimod reduced circulating lymphocytes
Francis et al., 2021 [275] Clinical and improved white matter microstructure, but
had no effects on symptoms in SZ patients
Esaki et al., 2020 [241] Clinical S1P was decreased in the corpus callosum of

SZ patients

Patnaik et al., 2020 [286]

Preclinical (in vitro)

Fingolimod increased BDNF and
promoted spinogenesis

Pépin et al., 2020 [249]

Preclinical (MPTP—PD model)

S1PR1 agonism ameliorated loss of
dopaminergic neurons and motor deficits

Riganti et al., 2016 [247]

Preclinical

S1P induced synapsin I mobilization
from synapses

Spampinato et al., 2015 [251]

Preclinical (in vitro)

Fingolimod reduced the immune-induced
BBB damage

Miron et al., 2010 [281]

Preclinical (in vitro)

Fingolimod induced remyelination
after demyelination

Miron et al., 2008 [280]

Preclinical (in vitro)

Fingolimod promoted extension and survival
of oligodendrocytes

Fingolimod exerted a cytoprotective effect and

Coelho et al., 2007 [278] Preclinical (in vitro) stimulation of remyelination
on oligodendrocytes
Jung et al., 2007 [279] Preclinical (in vitro) Fingolimod improved the survival of

rat oligodendrocytes

Autism spectrum disorders (ASD)

Almandil et al., 2023 [258]

Clinical

Single nucleotide polymorphisms (SNPs) in the
Sphkl gene were associated with ASD
in females

Li et al., 2022 [288]

Preclinical (BTBR mouse strain)

SphK blocker SKI-II recovered behavioral and
molecular impairments

Naegelin et al., 2021 [285]

Clinical (Rett syndrome)

Fingolimod did not show behavioral and
biochemical effects in children with RS

S1P levels were unaltered in the PFC of

Kurochkin et al., 2019 [257] Clinical ASD patients
Fingolimod improved white matter
Gurevich et al., 2018 [277] Clinical (MS) microstructure in MS patients with impaired

pyramidal function

Wu et al., 2018 [259]

Preclinical (valproic acid)

S1P was decreased in the hippocampus and
serum and there were memory impairments

Wang et al., 2016 [256]

Clinical

S1P serum levels were reduced in
ASD patients

Wang et al., 2013 [276]

Preclinical (EAE—MS model)

Fingolimod ameliorated white
matter microstructure
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Table 1. Cont.

Authors and Year

Type of Study Main Results

Attention deficit hyperactivity disorder (ADHD)

Brunkhorst-Kanaan et al., 2021 [265] Clinical

S1P plasma levels were increased in
ADHD adults

Henriquez-Henriquez et al., 2020 [263] Clinical

Alterations in ceramide synthesis genes, a
precursor of S1P in ADHD patients

Henriquez-Henriquez et al., 2015 [264] Clinical

Lower levels of sphingomyelins in
ADHD children

Abbreviations: chronic mild stress, (CMS); blood-brain barrier, (BBB); sphingosine-1-phoshpate receptor, (SIPR);
tumor factor necrosis alpha, (TNF-«); posttraumatic stress disorder, (PTSD); prefrontal cortex, (PFC); multiple
sclerosis, (MS); brain-derived neurotrophic factor, (BDNF); 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, (MPTP);
sphingosine kinase, (Sphk); experimental autoimmune encephalitis, (EAE).

6.2. S1P-Related Drugs for IBD

As previously highlighted, enhanced leukocyte recruitment within the gut represents a
key pathophysiological event in IBD, and blockade of T lymphocyte trafficking—for exam-
ple with a monoclonal antibody directed against x437 integrin such as vedolizumab—is
a widely used therapy for both ulcerative colitis (UC) and Crohn’s disease (CD). In this
context, S1IP pathway is now emerging as a promising target for human IBD treatment [289]
since its pharmacological modulation leads to the internalization of S1IPR1 receptors in
lymphocytes, preventing their mobilization from lymph nodes. This S1PR1 internaliza-
tion causes lymphocyte subpopulations to be sequestered in the aforementioned lymphoid
organs, preventing their circulation and recruitment to inflamed tissues, such as the gut.
Experimental evidence suggests that targeting SIP may be beneficial in treating intestinal
inflammation [219]. Additionally, SIPR1 receptor genetic deletion in mice has been shown to
increase bleeding in experimental colitis induced by oral administration of DSS [220]. How-
ever, the anti-inflammatory properties of S1P receptor agonists in experimental colitis may
not solely be due to their effects on lymphocyte trafficking, but also to potential effects on
dendritic cell migration and, as previously mentioned, vascular barrier function [221]. This
event, subsequently, leads to a diminished number of circulating and tissue lymphocytes.

This fact is supported by promising results of phase II and III clinical trials targeting
S1P receptor subtypes 1 and 5; up to date, two S1P receptor modulators, ozanimod and
etrasimod, have been tested for IBD. A first placebo-controlled, phase II trial that included
197 adult patients with moderate to severe UC showed that 1 mg per day of ozanimod—a
molecule with high affinity to S1P receptor subtypes 1 and 5—resulted in a slightly higher
rate of clinical response and remission at week 8 and 32 than placebo [290]. In a long-
term, open-label extension of this study, clinical, endoscopic, and histological benefits
with ozanimod were observed after two years of treatment, with a favorable safety profile
after 4 years of follow-up [291]. A subsequent randomized, placebo-controlled, phase III
trial published in 2021, analyzed the effect of ozanimod as induction and maintenance
therapy for patients with moderate to severe UC, including more than 1000 patients for
the induction trial and 457 in the maintenance study. The results demonstrated that
the rate of clinical remission and response was significantly higher among patients who
received ozanimod compared to those who received a placebo during both induction
and maintenance periods. [292]. Following these results, ozanimod became the first S1P
receptor modulator approved by the U.S. Food and Drug Administration and the European
Medicines Agency for the treatment of UC. Ongoing clinical trials are evaluating the efficacy
of this drug in the treatment of CD.

Furthermore, two independent randomized, placebo-controlled, phase III trials re-
cently published confirmed that etrasimod, another oral S1P receptor modulator that
selectively activates S1PR1, 4, and 5, was effective in achieving clinical remission in both
induction (12 weeks) and maintenance (52 weeks) periods in patients with moderately to
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severely active UC [293]. Importantly, the incidence of infectious adverse events and malig-
nancies with ozanimod and etrasimod were similar to that with placebo. This finding could
be related to data from a recent study suggesting that etrasimod reduced circulating levels
of specific subsets of adaptive immune cells (T and B lymphocytes) without significant
effects on innate immune cells, such as NK cells and monocytes, which are involved in
immune surveillance [294]. It is also known that modulation of SIPR2 and S1PR3—Dbut not
S1PR1, 4, and 5—has been associated with other serious adverse events, including reduced
pulmonary function, malignancies, macular oedema, and cardiac arrhythmias [295].

In alignment with Table 1, an array of preclinical and clinical evidence reinforcing the
pivotal role of S1P in the context of IBD is assembled in Table 2.

Table 2. Evidence of sphingosine-1-phosphate (S1P) in inflammatory bowel diseases (IBD).

Authors and Year

Type of Study Main Results

Inflammatory bowel diseases (IBD)

Sandborn et al., 2023 [293]

Etrasimod was effective and safe as an induction and

Clinical (UC) maintenance therapy in moderate to severe UC patients.

Martin-Hernandez et al., 2022 [88]

Stress increased S1P, dysregulated immune responses, and
enhanced intestinal permeability. Sphk2~/~ mice presented a
cytokine-expression profile towards a boosted Th17 response,
lower expression of claudins, and structural abnormalities in

Preclinical (sub-chronic stress)

the colon.
Sandborn et al., 2021 [291] Clinical (UC) gz;gfs‘)oi iﬁingaﬁr;g;g‘;ézgéagzll;ﬁi‘:ﬁts and was safe
Sodborntal 2021 12 Cimen () Qunimod v fcive i te s n niinand
Kiyomi et al., 2020 [294] Clinical Etrasimod reduced circulating adaptive but not innate immune

cells in healthy individuals.

Chen et al., 2018 [218]

Intestinal barrier damage was higher in S1PR2~/~. S1P/S1PR2
axis mediated CD4+T cell activation via ERK and MHC-II
in IECs

Preclinical (DSS-induced colitis)

Karuppuchamy et al. 2017 [221]

Chronic inflammation modulated S1PR1 expression and tissue

Preclinical (DSS-induced colitis) S1P levels

Dong et al., 2015 [219]

S1PR1 agonism improved barrier function by restoring T]

P B — / — .
Preclinical (IL.-10 mice) proteins and suppressing IEC apoptosis

Montrose et al., 2013 [220]

S1PR1 deletion enhanced vascular permeability and bleeding in
mice. Patients with active UC showed overexpression of SIPR1
and increased vascular density in inflamed the colon mucosa.

Preclinical (DSS-induced colitis)
Clinical (UC)

Eisenhoffer et al., 2012 [217]

S1PR2 receptor and ROCK controlled IEC extrusion, critical for

Preclinical (in vitro) a healthy intestinal barrier function

Greenspon et al., 2011 [216]

S1P increased E-cadherin levels, enhancing barrier function in

Preclinical (in vitro) cultured TECs

Sandbornd et al., 2016 [290]

Ozanimod exerted a slightly higher rate of clinical response and

Clinical (UC) remission (preliminary trial) in moderate to severe UC patients.

Abbreviations: ulcerative colitis (UC), sphingosine kinase (Sphk), T helper lymphocyte (Th17), dextran sulfate
sodium (DSS); sphingosine-1-phoshpate receptor (S1PR), extracellular signal-regulated kinase (ERK), major
histocompatibility complex (MHC), intestinal epithelial cell (IEC), interleukin-10 (IL-10), tight junction (TJ), Rho
kinase (ROCK).

7. Future Directions

This review has examined the current evidence demonstrating the ability of S1P
to modulate the immune system and barrier functions (BBB and intestinal), processes
that may underlie relevant pathophysiological features to psychiatric diseases. S1P
signaling has emerged as a promising pharmacological target, particularly due to the
proven efficacy of approved drugs in treating CNS and intestinal pathologies. So, is
S1P at the helm of immune and barrier mechanisms in psychiatric diseases? It is not
yet possible to give a conclusive response without first elucidating some critical points
through prospective studies.
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Addressing these questions poses several difficulties. Firstly, the exact molecular
mechanisms underlying S1P signaling are unknown despite numerous research efforts.
Although S1P is generally recognized to increase immune system activity and maintain bar-
rier function, controversial data hinder a conclusive understanding of the role of some S1P
elements due to complex signaling involving specific cell types and intricate intracellular
and extracellular pathways. For instance, SIPR1 stimulation in the context of psychiatric
diseases can be seen as deleterious for increasing inflammation but beneficial for promoting
barrier integrity. More mechanistic studies are mandatory to understand the molecular
functioning of all the S1P pathway elements and explain the big picture.

Secondly, preclinical and clinical evidence primarily relies on nonspecific SIPR mod-
ulators, making it challenging to attribute their effects to specific isoforms or cell types.
New pharmacological tools specific to each S1P element could help to unravel the com-
plex network signaling of S1P. Despite this limitation, the significant studies gathered in
this review show promising actions of available S1P-based drugs in psychiatric diseases,
demonstrating improvements in behavioral and pathophysiological features. While S1P
clinical evidence is still limited, it reinforces the idea of S1P playing a role in these illnesses.

The final main difficulty is inherent to the nature of MDD, SZ, or ASD as multifactorial
and heterogeneous diseases with elusive pathophysiology. Neuroinflammation and barrier
alterations are transversal to all these pathologies, but they may merely be coincidental
phenomena. If this were the case, the possibilities of S1P as a pharmacological alternative
would decrease unless it modulates other essential mechanisms beyond immune and
barrier functions. Moreover, relevant differences exist among psychiatric illnesses and
even their subtypes. Therefore, future research should carefully analyze which pathologies
or subtypes would benefit from controlling inflammation and barrier integrity to achieve
clinical improvement.

In light of all the exposed reflections, the question in the title remains open but
highly relevant. While a definite role of S1P in psychiatric diseases cannot be ascribed
yet, emerging evidence, particularly in the last years, augurs a necessary intensification
of research in this field. Targeting S1P has the potential to modulate immune and barrier
alterations associated with these diseases and may have implications in their possible
origin through the leaky gut phenomenon. As our understanding of the intricate signaling
pathways and molecular mechanisms involving S1P continues to expand, so does the
potential to target this lipid mediator for more effective and specific treatments in various
psychiatric conditions. Innovative strategies, such as selective modulators of S1P receptors,
combination therapies, and personalized medicine approaches, may usher in a new era
of precision psychiatry. While challenges lie ahead, the ongoing pursuit of S1P-related
research holds immense promise in alleviating the burden of psychiatric diseases and
improving the lives of millions worldwide.
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