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(Chenopodium quinoa)
Carla Colque-Little1†, Miguel Correa Abondano2†, Ole Søgaard Lund1, Daniel Buchvaldt Amby1,
Hans-Peter Piepho3, Christian Andreasen1, Sandra Schmöckel3 and Karl Schmid2*

Abstract

Background: Quinoa (Chenopodium quinoa Willd.) is an ancient grain crop that is tolerant to abiotic stress and has
favorable nutritional properties. Downy mildew is the main disease of quinoa and is caused by infections of the
biotrophic oomycete Peronospora variabilis Gaüm. Since the disease causes major yield losses, identifying sources of
downy mildew tolerance in genetic resources and understanding its genetic basis are important goals in quinoa
breeding.

Results: We infected 132 South American genotypes, three Danish cultivars and the weedy relative C. album with a
single isolate of P. variabilis under greenhouse conditions and observed a large variation in disease traits like
severity of infection, which ranged from 5 to 83%. Linear mixed models revealed a significant effect of genotypes
on disease traits with high heritabilities (0.72 to 0.81). Factors like altitude at site of origin or seed saponin content
did not correlate with mildew tolerance, but stomatal width was weakly correlated with severity of infection.
Despite the strong genotypic effects on mildew tolerance, genome-wide association mapping with 88 genotypes
failed to identify significant marker-trait associations indicating a polygenic architecture of mildew tolerance.

Conclusions: The strong genetic effects on mildew tolerance allow to identify genetic resources, which are
valuable sources of resistance in future quinoa breeding.

Keywords: Chenopodium quinoa, Chenopodium album, Peronospora variabilis, Downy mildew, Phenotyping, Linear
mixed models, Quantitative resistance, Plant genetic resources
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Background
Quinoa (Chenopodium quinoa Willd.) is a grain crop
that was domesticated in South America and cultivated
from Chile to Southern Colombia for thousands of years
[1]. After the arrival of the Spanish, it was replaced by
European crops in many regions [2]. More recently,
quinoa has experienced renewed interest as alternative
grain crop worldwide and became an important export
commodity for countries like Bolivia, which exported
approximately 40,000 tons in 2014 [3]. The interest in
quinoa results from its nutritional properties and toler-
ance to abiotic stresses such as high salinity, drought,
and frost [2, 4]. The increasing demand for quinoa and
successful cultivation outside its native range led to
multiple breeding programs aimed at improving yield,
resistance and adaptation to novel cultivation regions or
climate change [5–7]. Susceptibility to plant diseases are
one important biotic factor that limits crop yield. Downy
mildew, the most important disease of quinoa, is caused
by the biotrophic oomycete Peronospora variabilis
Gaüm, previously known as Peronospora farinosa f.sp.
chenopodii [8]. It causes severe yield losses of up to 30 −
50% in tolerant cultivars, and an almost complete yield
loss in susceptible cultivars under conditions of high
humidity and absence of chemical control measures [9].
The disease is widely spread over continents where qui-
noa is cultivated and may have been spread by seeds that
were contaminated with the pathogen [10–13]. P. varia-
bilis also infects the closely related and widespread weed
C. album (known as goosefoot, fat hen, or lambs quar-
ter) [14, 15] which may act as a secondary host. C.
album occurs throughout Europe and is frequently
infected by downy mildew-causing pathogens that seem
to be conspecific with P. variabilis infecting C. quinoa.
Therefore, C. album may act as alternative host for P.
variabilis and constitute a reservoir for this pathogen
[8, 16]. Other weedy Chenopodium species such as C.
murale (nettle leaf goosefoot), C. ambrosioides (Indian
goosefoot) are also susceptible [17–19], but cross-infection
with C. quinoa has not been reported so far. Since the dis-
ease is seedborne, tolerance to this pathogen is a critical
trait in the development of new quinoa varieties [20].
Currently, very little is known about the physiological

mechanisms involved in the P. variabilis - quinoa inter-
action, or about the genetic basis of downy mildew toler-
ance and the role of other phenotypic traits in disease
susceptibility. Previous studies for quinoa tolerance
using greenhouse experiments, seedlings, detached
leaves and field scorings primarily focused on quantita-
tive measures by scoring disease symptoms [9, 13, 21,
22]. Response to mildew infection utilizes visual scoring
of disease severity, which is the proportion of leaf tissue
with lesions caused by the pathogen [9]. Another measure
is the extent of sporulation by the pathogen. It is measured

with a detached leaf assay and the identification of spore
bodies on leaf surfaces [23]. Reliable and efficient scoring of
tolerance to downy mildew is a key component in the
development of improved quinoa varieties.
The objectives of the present study were to investigate

the variation of quinoa genotypes from its native range
in South America (Bolivia, Peru, Ecuador, and Chile) in
their response to inoculation with the downy mildew
pathogen. We investigated the robustness of phenotypic
scoring under controlled conditions and characterized
the relationship of the disease traits severity of infection,
sporulation and incidence with other phenotypic traits.
These traits included size and density of leaf stomata
because P. variabilis enters leaf tissues through the sto-
mata [8, 24], and seed saponin content because saponin
extracts have antifungal properties [25, 26]. We esti-
mated genetic variance components and heritability of
the response to P. variabilis infection and conducted a
genome-wide association study (GWAS) with whole
genome sequences of a subset of accessions to identify
genomic regions with putative tolerance genes.

Results
High variation in mildew tolerance
In total, 132 genotypes (5 control varieties, 21 cultivars
and 106 accessions) were successfully grown, inoculated
with mildew, phenotyped and scored in three independ-
ent greenhouse experiments. Severity of infection ranged
from 5.0% (Chenopodium album) to 83.0% (Accession
G9) with a mean of 46.2%, whereas sporulation ranged
from 0.2% (Variety Puno) to 83.6% (Cultivar CV21) with
a mean of 42.6%. Incidence of infection showed a
smaller range among genotypes from 36.8% (Accession
G41) to 92.0% (Accession G92) with a mean of 71.6%.

Analysis of mildew tolerance with linear mixed models
(LMM)
The severity of infection and sporulation measurements
are expressed as proportions. We therefore fitted the
LMM in Eq. (1) with both the raw data and data that
have been transformed with logit and angular functions,
which are frequently used with proportions. Our goal
was to assess the effect of data transformation and inclu-
sion of control varieties on estimates of variance compo-
nents, heritabilities, and genotype means. In addition, we
evaluated the effects of a randomized block design with
replicated control varieties and unreplicated genotypes
per block by using dummy variables to remove repli-
cated checks from the model in order to verify that
estimates of variance components are not influenced by
control varieties. The combination of these parameters
resulted in six LMMs that were fitted to the traits sever-
ity and sporulation (Table 1). Genotypes were fitted as
fixed effects in all models to estimate genotype means
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and to test for a genotype effect on disease traits. A
REML ratio test showed that a heterogeneous error vari-
ance structure for the experiments provided a better
model fit (p < 0.05) except for a single model (Table 1).
Untransformed data for severity of infection did not

strongly deviate from normality in a histogram of resid-
uals and a QQ-plot (Supplementary Fig. S2A and B). On
the other hand, a residual vs. fitted plot shows increasing
variance along the x-axis and indicates heterogeneity of
variances (Supplementary Fig. S2C). One source of vari-
ation is the experiment (Supplementary Fig. S2D), which
is consistent with the results of the REML ratio tests in
Table 1. A Wald test for fixed effects of genotypes on se-
verity of infection was highly significant for all six fitted
models and tests without control varieties have consider-
ably lower p-values (Table 2).
Estimation of variance components allows to model

sources of variation and to account for the structure of
an experimental design [27]. For the trait severity of in-
fection, proportions of variance components were highly
similar among models. We obtained the highest esti-
mates and confidence intervals for between experiments
variance ( σ2E ) and genotype by experiment interaction
variance (σ2G:E ) components. Estimates of variance com-
ponents for experiment 1 to 3 (σ2e1, σ

2
e2, σ

2
e3) and variance

of blocks nested within experiments (σ2
E:B ) were much

lower (Supplementary Fig. S3 A-C, Supplementary Table

Table 1 Linear mixed models used to analyze quantitative
response variables severity of infection and sporulation

Trait Data
transformation

Control
variety
included

Variance type

p-value

Severity No transformation Yes 1.72 × 10−10

No 1.92 × 10−04

Arcsine root Yes 4.68 × 10−07

No 0.0014

Logit Yes 2.44 × 10−08

No 9.77 × 10−06

Sporulation No transformation Yes 1.45 × 10−05

No 0.0390

Arcsine root Yes 0.0049

No 0.199

Logit Yes 0.0019

No 0.0259

Type of error variance refers to error variance structure between experiments.
p-value of a REML ratio test comparing a null model with homogeneous
variances of the error with a model with a heterogeneous variance structure

Table 2 Wald F-test for genotype fixed effects in a linear mixed model analysis (LMM)

Model Data
transformation

Control
variety
included

LMM analysis d.f. p-value Mean σ2
G

�H2

F-value s.e.d.

Trait: Severity of infection

1 Untransformed Yes 3.573 131 1.18 × 10−18 0.12 0.02 0.72

2 No 23.95 130 3.56 × 10−93 0.12 0.03 0.77

3 Arcsine root Yes 3.79 131 3.35 × 10−20 0.14 0.03 0.74

4 No 28.95 130 8.41 × 10−103 0.14 0.03 0.78

5 Logit Yes 3.75 131 6.30 × 10−20 0.58 0.46 0.73

6 No 30.08 130 5.59 × 10−104 0.59 0.61 0.77

Trait: Sporulation

1 Untransformed Yes 4.47 131 4.39 × 10−25 0.16 0.04 0.78

2 No 8.37 130 1.55 × 10−44 0.17 0.05 0.78

3 Arcsine root Yes 4.89 131 7.30 × 10−28 0.20 0.07 0.79

4 No 11.35 130 1.13 × 10−57 0.20 0.08 0.80

5 Logit Yes 4.96 131 2.47 × 10−28 0.87 1.51 0.80

6 No 11.43 130 4.67 × 10−58 0.91 1.85 0.82

Trait: Incidence

Yes 1.62 131 0.0003 0.55 0.10 0.4

No 2.39 130 <0.0001 0.48 0.08 0.4

Mean standard error of the difference (s.e.d.), genetic variance (σ2G) and heritability ( �H2) estimates from were obtained from a linear mixed model for the traits
severity and sporulation, and from a generalized linear mixed model for the trait incidence
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S2). Estimated variance components were highly similar
in a comparison of models with and without control var-
ieties because the 95% confidence intervals overlapped,
but variances of models with controls varieties were
smaller than without (Supplementary Fig. S3 A-C).
The results for the trait sporulation after infection are

very similar to severity after infection. The Wald F-test
for fixed effects was highly significant in every model fit
with sporulation as response variable, which indicates
that host genotypes differ in sporulation (Table 2). Re-
moval of control varieties strongly reduced p-values. For
sporulation, the largest variance component in every
model was genotype by experiment interaction, σ2E:B , but
in contrast to severity of infection, estimates of variance
between experiments (σ2E ) and variance of blocks within
experiments (σ2

E:B ) were the lowest among all variance
components in all models (Supplementary Fig. S3D-F).
Taken together these analyses provide strong evidence
for an effect of genotypes on severity of infection and
sporulation that is robust with respect to the data trans-
formation and the effects of a blocked design.

Generalized linear mixed model (GLMM) analysis of
incidence data
For the trait incidence of infection, we used a GLMM be-
cause it allows to fit non-normally distributed data like

discrete proportions and to include random effects. We
used a logit link function and assumed homogeneous vari-
ances between experiments as indicated by the conditional
Pearson residuals, i.e., there is no sign that the experi-
ments are sources of variation that need to be accounted
for (Supplementary Fig. S4). Using incidence as response
variable in two GLMMs that differed by the inclusion and
exclusion of control varieties, the test for fixed effects in
both models was significant (p < 0.001). The genotype by
experiment σ2G:E variance component was larger in the
model with control varieties (Fig. 1). Variance components
reflecting the experimental design, σ2E and σ2E:B , have the
largest standard errors in both models. Additionally, in
the GLMM without the control varieties the experiments
σ2E variance was zero, indicating that they are comparable
between each other. The latter variance component and
the residual error variance components were the largest
regardless of the model used. In summary, like the other
two disease traits, incidence of infection also shows a
strong effect of genotypes on trait variation.

Correlations between traits
The similar variance component structures of the three dis-
ease traits (Fig. 1 and Supplementary Fig. S3) suggests that
they are correlated. Adjusted means of the traits severity of

Fig. 1 Variance component estimates and their standard errors for incidence of infection in a GLMM with control varieties. σ2G:E , σ
2
E , σ

2
E:B : Variance

components for the genotype by experiment interaction, experiments and blocks nested within the replicates, σ2e : Residual variance
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infection and sporulation are highly correlated with control
varieties (R= 0.91, p < 0.001; Fig. 2) and without control var-
ieties included (R= 0.9, p < 0.001). The correlation of mildew
incidence with both severity and sporulation was markedly
lower (R= 0.67 and R= 0.65, respectively, p < 0.001).

Analysis of heritability

We also estimated heritability, �H2 , of the three disease
traits and evaluated the effect of data transformation on
these estimates. The mean standard error of the difference
(s.e.d.), which measures precision of pairwise comparisons
in each model, and genetic variance, which is estimated
when genotypes are fitted as random effect, are both

components of �H2 (Eq. (3)). Both parameters showed a
small increase between models with and without control
varieties, and we observed this difference with all data
transformations (Table 2). Higher mean s.e.d values show
that a removal of control varieties decreased the precision

of pairwise comparisons. In consequence, �H2 estimates in
models without control varieties or with an arcsine root
transformation resulted in marginally higher estimates
than models with control varieties or with other transfor-
mations, respectively (Table 2). To summarize, data
transformations and the exclusion of replicated control

varieties have a little effect on the estimation of �H2 , be-
cause heritability estimates remain within a narrow range
from 0.72 to 0.78 for severity of infection, and a range
from 0.78 to 0.82 for sporulation for all models analysed.
For incidence of infection, estimated heritability was 0.40,
the genetic variance was 0.10 and the mean s.e.d was 0.55
in the GLMM model with control varieties, and 0.08 and
0.48 in the model without control varieties.

Ranking of genotypes by response to downy mildew infection
The strong effect of genotype on the three pathogen traits
suggests that genebank accessions and varieties in our

sample are highly variable with respect to mildew toler-
ance. We therefore compared means in all three traits and
identified substantial differences between genotypes.
Adjusted mean values for severity of infection range from
5 to 83% in the LMM of untransformed data and with
control varieties, and show a very similar range in the
other models. Models without control varieties result in a
smaller range for this trait because the two control
varieties C. album and Puno had the lowest estimates for
severity (Fig. 3a). We did not observe a strong effect of
control varieties and the type of data transformation on
the ordering of genotypes for severity of infection. There-
fore, differences between genotypes for this trait are
robust and allow to identify tolerant and susceptible geno-
types. The control varieties C. album, Puno and genebank
accessions G41, G42, G76, G93, G96 and G112 are most
tolerant, whereas control variety Vikinga, cultivars CV13
and CV21, and accessions G4, G9, G57, G67, G82 and
G91 are most susceptible (Fig. 3a).
The genotypes show a similar pattern with sporulation.

The adjusted means of untransformed sporulation esti-
mated including the control varieties ranged from 0.2%
(Puno) to 83.6% (CV21). Transformation of the sporula-
tion data had a small effect on the distribution of esti-
mated means, independent of whether control varieties
were included or excluded (Fig. 3b). The genotypes with
the lowest values for sporulation are control varieties C.
album and Puno, and genebank accessions G29, G41,
G42, G93, G96, G106, G108, G112, wheras genotypes
with highest values for sporulation are control variety
Vikinga, cultivars CV12, CV13, and CV21, and acces-
sions G4, G9, G43, G67, G70 and G104 (Fig. 3b).
The variation among genotypes for the trait incidence

is lower than for the other two disease traits (Fig. 3c).
Adjusted mean values were little affected by the inclu-
sion or exclusion of control varieties. Genotypes with
low incidence include control varieties Puno, C. album

Fig. 2 Correlations between percentage of sporulation and severity of infection. (a), severity and incidence of infection (b) and sporulation and
incidence of infection (c). In all three cases, the correlation was highly significant (p < 0.0001)
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and accession G41; while control variety Vikinga and
genotypes G75 and G92 had the highest percentages of
incidence (Fig. 3c).

Relationship of disease traits with genebank passport
data and seed saponin content
The genotyped accessions included in the experiment
were selected using information on mildew tolerance
from passport data to obtain a set of accessions, which is
polymorphic for this trait. The severity and incidence
data recorded in the passport data of genebank acces-
sions are highly incongruous with our results. For ex-
ample, 35 of 106 accessions were recorded under the 0%
severity category in the passport data but no accession
was classified as such in our analysis; 16 accessions were

assigned to 0.1–25% group and 14 in this study; 26
accessions as 26–50% vs. 56 in our dataset. According to
the passport data, 26 accessions are in the most suscep-
tible category (75–100%), and only 6 accessions in the
present study.
The only significant correlation of disease and stoma-

tal traits was between severity and width of stomata (r =
0.18, p = 0.041). We also tested whether saponin content
in seeds is correlated with disease susceptibility and car-
ried out foam tests with seed harvested in two locations
because saponin content varies between phenological
stages and environments. 105 genotypes had seed avail-
able from both locations, Bolivia and Denmark, while 26
genotypes were harvested only in Denmark. Foam height
measurements were not correlated between sources of
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seed (Pearson’s r = 0.16, p = 0.11). In a comparison of
estimated average severity and sporulation of genotypes
with and without saponins, we did not observe any
systematic pattern based on the seed source or if acces-
sions or cultivars were compared separately (t-test with
p > 0.05).

Isolation of P. variabilis from C. album and cross-infection
of C. quinoa
The isolate of P. variabilis used in this study was origin-
ally isolated from C. album and afterwards vegetatively
propagated on C. quinoa (cv. Blanca and Vikinga).
Spores harvested from these plants and inoculated onto
Chenopodium spp. showed low disease severity (4%) and
lowest sporulation (0.4%) to C. album compared to the
C. quinoa genotypes (Fig. 3). This is the first time that
cross infection from C. album has been reported. The
BLAST comparison of the ITS DNA sequences used to
validate the isolate showed a 100% match to an isolate
obtained from C. quinoa cv. Atlas collected in 2001 (EU
113305).

Whole genome sequencing of accessions
Given the highly significant genotypic effect on response
to mildew infections, we sequenced a subset of 88 acces-
sions and cultivars representing the range of phenotypic
variation to conduct a GWAS. The sequence genotypes
included two control varieties (Puno and Titicaca), 18
cultivars, and 68 genebank accessions of which 39

originated from Bolivia, 19 from Peru, two from Ecuador
and 1 from Chile. The average severity of the sequenced
genotypes ranged between 11% and 83%, with an average
of 47%.
Sequencing of 88 samples produced 7.9 × 1011 bp in

2.6 × 109 read pairs with a length of 150 bp each. After
mapping processed sequence reads to the quinoa refer-
ence genome version 1, sequence coverage per genotype
ranged from 0.38 X (control variety Titicaca) to 9.17 X
(Accession G37) with an average of 3.24 X. The propor-
tion of mapped reads per sample ranged from 99.3% to
99.9%, with an average of 99.8%. In contrast to the
nuclear genome, the chloroplast and mitochondrial
genomes were overrepresented in our sample, with a
coverage of 109 X and 32.6 X, respectively. Such a high
coverage is expected because there are multiple copies
of mitochondrial and plastid genomes per haploid nu-
clear genome.
Variant calling with GATK identified 18,017,831 bial-

lelic SNPs across the genome. After filtering for minor
allele frequency and sample missingness, and testing for
departure from Hardy-Weinberg Equilibrium 4,131,562
variants remained. We imputed genotypes with coverage
<8 X, and sample and position missingness below <0.7,
which produced 606,791 SNPs from 61 samples with an
estimated accuracy of 96.9% based on 5,000 hidden
markers. Fig. 4a shows that linkage disequilibrium,
measured as r2, drops to 0.1 within 22-25Kb in the
sequenced genotypes.

Fig. 4 Linkage disequilibrium and population structure. a Decay of linkage disequilibrium (LD) expressed as a function of physical distance (kb)
and r2. b Plot of the first two principal components of a PCA analysis. Percentages in each label are the proportion of variance explained by each
PC; colors indicate the country of origin as indicated in the passport data
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A principal component analysis (PCA) shows that all
genotypes classified as cultivars cluster together (Fig. 4b,
lower left corner). The control variety Puno and the gen-
ebank accession G71 (originating from Bolivia) are sepa-
rated from the other genotypes. Accession G101 is also
separated from the major group and originates from
Chile, suggesting it is of the coastal ecotype. Accession
G42, which appears to be separate form the main group
(Fig. 4b, middle bottom), has very low severity and
sporulation, which is comparable to the variety Puno.
The remaining accessions originating from Bolivia, Peru
and Ecuador are mixed and do not form distinct groups.

Association mapping for severity of downy mildew
We carried out two different GWAS analyses to detect
genomic regions associated with severity of downy mil-
dew infection. Since severity and sporulation showed a
high degree of correlation, we conducted the GWAS
only with the first of the two traits. An analysis of 603,
871 SNPs in 61 genotypes with FarmCPU did not un-
cover statistically significant associations with average
severity when the model was fit with or without principal
components (PCs) (Fig. 5a and Supplementary Fig. S5A,
respectively). A single variant on chromosome 4 (S04_
33782670) is located above a threshold (1.656 × 10−06) in
the model without correction for population structure
using principal components (Fig. 5). The QQ plots
showed no sign of inflation or deflation of p-values with
respect to the theoretical expectation (Figs. 5b and
Supplementary Fig. S5B, respectively) and therefore
supports the absence of a significant association.
We also used a k-mer based approach because it

allows the inclusion of additional genotypes with lower
sequence coverage (n = 88) and is not biased to genomic
regions included in a reference sequence. This analysis
was based on an average of 570,741,731 k-mers of length

31 per sample. The control variety Titicaca (67,365,628)
and genebank accessions G37 (814,316,239) were the ge-
notypes with the lowest and highest numbers of k-mers
counts, respectively. In total, 992,946.265 k-mers passed
the filters and were included in the kinship matrix esti-
mation and the subsequent GWAS. For the first stage of
the GWAS, 880,137,481 k-mers were tested and 10,001
passed the first filter to be fit with GEMMA. The smal-
lest p-value for any k-mer was 9.19 × 10−10 for a single
k-mer. Therefore, this analysis also did not detect any
significant associations with the trait severity of infection
given a permutation-based 5% p-value threshold of
1.505 × 10−10 for the k-mer analysis.

Discussion
The inoculation of quinoa varieties and genebank acces-
sions with an isolate of the downy mildew pathogen Pero-
nospora variabilis revealed substantial variation in the
three infection related traits severity of infection, sporula-
tion and incidence of mildew (Fig. 3). Using a mixed
model approach we validated that estimates of genetic ef-
fects, variance components and heritabilities are robust
with respect to data transformation and the inclusion or
exclusion of control varieties between experiments. The
differences in susceptibility to mildew infection have a
strong genetic component as indicated by high genetic
variance component estimates and high heritabilities, but
we were not able to identify individual genomic regions
strongly associated with mildew susceptibility in a GWAS.
In previous studies, ecotype, environmental or physio-
logical parameters like altitude of site of origin, seed sap-
onin content, or size and density of stomata were
postulated to be correlated with disease tolerance. We did
not find any strong correlation of the three disease traits
with any of these parameters except for width of stomata.

Fig. 5 Association mapping for downy mildew severity using FarmCPU without principal components as covariates. a Manhattan plot. Red line
shows the Bonferroni corrected threshold for p = 0.01 and orange line indicates a suggestive threshold (1/number of markers). Bar at the bottom
indicates marker density. b QQ plot for the FarmCPU model with the 95% confidence interval (light blue); Red line draws the expected
distribution of p-values
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Large genetic effect of mildew tolerance
Mildew tolerance was scored in a single plant per block,
in the case of accessions and cultivars, while control var-
ieties had multiple plants because one person scored
each leave of all plants and the labor-intensive process
has a time limitation for scoring window (max. 12 h). To
evaluate the robustness of parameter estimates, we used
linear mixed models and various combinations of data
transformation and inclusion or exclusion of control var-
ieties. Although the use of data transformation is under
debate [28–30], it did not have a large effect on the dis-
tribution of residuals or on tests of fixed effects. This
provides strong evidence for the robustness of our esti-
mates because we phenotyped approximately the same
number of plants per genotype, which reduces the effect
of heteroscedasticity [31], and from the robustness of
LMMs to heterogeneous error variances [32]. The effect
of replicated control varieties in the three experiments
on model fit and parameter estimation was minor, because

their removal caused only a small increase in �H2 estimates.
This robustness results from a balanced experimental
design, in which changes to differences are only small [33].
A limitation in fitting LMM and GLMM is that

reliable estimation of the variance of a random effect re-
quires at least five levels, i.e. locations, experiments,
years, etc. [27]. The low number of groups in our experi-
ments explains the large confidence intervals of the design
variance components σ2E and σ2E:B (Supplementary Tables
S2 and S3), which therefore are not reliable estimates of
variation between experiments or blocks. We nevertheless
modeled these effects as random to use inter-block infor-
mation and to account for non-independence of the data,
because genotypes were nested in blocks, which were
nested within experiments [27, 34].
Previous work on quinoa yield traits found high estimates

of genotype-by-environment variance components [35].
The genotype-by-experiment interaction variance (σ2

G:E ) in
our study was also large in comparison to other variance
components across traits and models, which reflects that
even subtle differences in the environment can cause a
genotype to respond differently to the disease. From a plant
breeding perspective, the σ2G:E variance component is
important because it masks the genotypic component of
phenotypic variance. A high observed σ2G:E suggests that fu-
ture studies of mildew tolerance using diverse quinoa geno-
types should include multiple locations and years [36], or
unbalanced designs with replicated control varieties that
allow testing of many genotypes [37].

High correlations between disease-related traits
To identify different reactions of host plants, we mea-
sured three different disease-related traits. A comparison
of severity of infection and sporulation is of interest

because pathogen populations typically harbor high
levels of genetic variation for both virulence and fecund-
ity [38, 39]. Some quinoa host genotypes might allow
fast fructification of the pathogen while others may sup-
press its proliferation [40]. We found a very strong posi-
tive correlation between severity and sporulation and
scoring of the former seems to be a good predictor of
the latter. For this reason severity alone can be used to
assess a panel of genotypes because it also showed a
smaller error variance than either sporulation (Fig. S3D-
F) or incidence (Fig. 1). The correlation coefficients of
the disease traits in our study (R = 0.9) is larger than the
coefficient reported in an evaluation of scoring methods
for downy mildew in cucumber [41]. However, sporula-
tion should be measured in highly resistant genotypes
with <5% severity of infection, because in such a genetic
background pathogen proliferation may be strongly im-
paired as observed in the wild relative C. album, control
variety Puno and several gene bank accessions.

Analysis of heritability
Consistent with estimates of genetic variance, heritability
estimates were moderately high and very similar be-
tween models with a range from 0.72 to 0.78 for severity
and from 0.78 to 0.81 for sporulation. In comparison,
estimated heritability of sporulation of downy mildew in
grapevine (Vitis vinifera) was around 0.40 [42], and re-
sistance to systemic infection by sorghum downy mildew
in maize was in the range of 0.61–0.68 [43]. Although

estimates of �H2 from greenhouse experiments may differ
from field trials [44], the high heritabilities for the dis-
ease traits indicate the selection for higher mildew toler-
ance is possible. In this respect our results are consistent

with previous estimates of �H2 for physiological, morpho-
logical and yield traits, which are also high (≈ 0.85) [45]
and indicate that multiple traits of quinoa can be sub-
stantially improved by plant breeding.

Identification of accessions tolerant to downy mildew
Although our panel includes the main quinoa ecotypes
[46], there was no correlation between elevation and
severity of infection or sporulation. Since infection re-
quires high humidity (Fig. 8), a lack of such a correlation
reflects microclimatic variation of humidity in high alti-
tudes. For example, the Bolivian highland (Altiplano) is
more humid in the North than in the South [47]. In
addition, ecotypes from the Andean Valley (2500–3500
masl), where humidity also tends to be higher, are
among the most tolerant accessions [47–49]. These ob-
servations are consistent with our results because five
accessions from the southern altiplano had the highest
severity of infection (G4, G9, and G82 from Bolivia, and
G67, and G99 from Peru).
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We observed that a ranking of genotypes by their mil-
dew tolerance is robust with respect to disease traits and
analysis methods, which allows to identify accessions
high tolerance for further investigations or utilization in
breeding. Tolerant genotypes include the wild relative C.
album and the Puno control variety, which was one of
the genotypes with the lowest severity, sporulation, and
incidence of downy mildew (Fig. 3a-c), as well as a set of
Bolivian cultivars and genebank accessions. For example,
cultivars Mañiqueña (CV21) and Phisankalla (CV10)
perform well in dry areas like the southern Altiplano in
Bolivia, but are susceptible to mildew in humid environ-
ments [3, 7, 48]. This phenotype was confirmed in our
study because both cultivars are among the most suscep-
tible under the humid conditions of our experiment (Fig.
3). It has been proposed that genotypes with good per-
formance in dry and a high disease susceptibility in
humid environments either have not been selected for
disease tolerance during domestication or have an ad-
vantage in dry environments possibly because of the cost
of resistance [47]. Current evidence is contradictory and
does not establish such a relationship, because cultivar
‘Rosa Blanca’ (CV6) was developed in a dry region [3],
but has a higher tolerance to the disease with an average
severity of 32%, whereas the more susceptible cultivars
‘Jach’a Grano’ (CV15; 64% severity) and ‘Aynoka’ (CV20;
58% severity) originated from the same breeding pro-
gram. Such a high variation may result from the inter-
action between genotypes and experiments (Fig. S3) and
is consistent with similar GxE interactions anatomical
and yield-related traits of C. quinoa [45, 50].
An important limitation of our study is the use of a

single isolate only of P. variabilis for inoculation because
it does not allow to test whether mildew tolerance is
race-specific or reflects a quantitative resistance. Prelim-
inary evidence supports the latter hypothesis, because
cultivars Kurmi (CV16) and Mañiqueña Real (CV21)
were inoculated with a Bolivian isolate of P. variabilis
and classified as tolerant and susceptible, respectively, as
evaluated by the disease progression of downy mildew P.
variabilis [51]. Our results confirm the differences be-
tween these two cultivars with a different isolate because
Kurmi (45.1% severity of infection) was less susceptible
than Maniqueña (70.7%) (Fig. 3). Since Kurmi was devel-
oped for cultivation in the highlands (3600–3800 masl)
and selected in field trials for downy mildew resistance
[52], a high tolerance of Kurmi to two different isolates
supports a quantitative disease tolerance. Our results
also support previous work that found recombinant in-
bred lines from both Chilean and Peruvian origin seg-
regating for quantitative mildew resistance in a F2:6
population [23].
Comparison of passport data with our results is limited

by missing information on scoring methods, phenotypical

stage of the plant, genetic constitution of accessions (e.g.,
extent of heterozygosity) and information about field trials
in Bolivia. In addition, our data on severity of infection is
based on one pathogenic isolate whereas the passport data
is based on natural infections of local races whose
virulence might differ from the Danish isolate used in this
study [14]. Previous studies have shown that Andean
isolates are genetically distinct when highly sensitive poly-
morphism methods of identification are used [14]. Based
on the PCR sequencing data, our isolate showed complete
sequence identity in the ITS region to specimen EU
113305 collected in Tåstrup, Denmark on C. quinoa cv.
Atlas in 2001 [8].

Relationship of disease traits with stomatal traits and
seed saponin content
P. variabilis enters host tissues through stomata, and its
haustoria emerge from the stomatal pore to release
spores [8, 24], which may explain the preference of
pathogen for humid conditions because stomata are typ-
ically open under such conditions [53]. We therefore
tested whether pathogen traits are correlated with sto-
matal traits and found that only severity of infection
showed a weak correlation with stomatal width. This re-
sult should be taken with caution because our measure-
ments were based on only a single leaf per genotype due
to the high effort required to obtain the data. Future
phenotyping should make use of automated image ana-
lysis methods to obtain larger data sets for stomatal
traits.
Downy mildew remains dormant in the pericarp of the

seed [54] and the saponin content of the seeds could in-
fluence the response of a genotype during the early
stages of infection. However, we found no support for a
relationship between saponin content of the seed and
mildew severity. One explanation for the absence of a
correlation may be that the foam test revealed GxE ef-
fects, because the scores for content of saponin differed
between seed samples of the same genotypes obtained
from plants cultivated in different locations. This is ex-
pected because the content of saponin is variable over
time and depends on the water status of the plant [55, 56].
Therefore, our results do not support the hypothesis

that mildew tolerance is substantially influenced by
other traits such as stomata characteristics or saponin
content.

Interpretation of GWAS for severity of downy mildew
We conducted a GWAS with severity of mildew infec-
tion and whole genome resequencing data to test
whether the observed differences between genotypes are
caused by few genomic regions. Both GWAS methods
failed to detect significant associations of variants or k-
mers with severity of infection. The power of GWAS
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depends on the sample size of the association panel and
on the genetic architecture of a trait of interest [57]. Our
analysis was limited by a small sample size of 61 (Farm-
CPU) and 88 (k-mer analysis) accessions, and possibly
by the genetic architecture of severity of infection
because distribution of phenotypic values suggests it is a
polygenic quantitative trait (Fig. 3a). A polygenic re-
sponse of quinoa to P. variabilis infections is supported
by multiple studies that include greenhouse experiments
and field trials [13, 23, 40, 58–61].
Our results provide a perspective for a more efficient

resistance breeding in quinoa. The large variation found
in mildew tolerance and high heritabilities of disease
traits allows the development of QTL mapping popula-
tions by crossing genotypes from both ends of the distri-
bution (e.g., Danish varieties Puno and Titicaca; Fig. 3).
Previous work suggests that QTL mapping may identify
major R genes that could be useful in quinoa breeding
because mildew tolerance is modulated by incomplete
gene effects [62], which depends on pathogen agressivity,
as observed on Ecuadorian material [21]. Furthermore,
the segregation ratio of mildew severity in an F2 map-
ping population derived from a cross of bitter and sweet
(i.e., no seed saponins) genotypes suggested that mildew
tolerance shows a dominant inheritance [63].
The analysis and utilization of genetic variation for

mildew tolerance will be enhanced by more high
throughput phenotyping methods. Our experimental
setup was on targeted inoculations with a single isolate,
which contributes to a robust and repeatable estimation
of disease tolerance, but it is work intensive and limits
the number of genotypes for genetic mapping. However,
alternative approaches such as scorings of detached
leaves or randomized selection of leaves on the field can
be misleading because host genotype x pathogen geno-
type x environment (GxGxE) effects in the field are diffi-
cult to control. Furthermore, symptoms of pathogen
infection are influenced by the position and age of leaf
tissue [64] which results from induced resistance that
occurs not only at the site of the initial infection but also
in distal, uninfected parts [65]. Therefore, in addition to
a controlled greenhouse experiment used in this study,
multilocation field trials of segregating populations that
use modern phenotyping technologies such as deep
learning to score pathogen infections are a complemen-
tary approach in resistance breeding [66]. Both approaches
in combination with genetic analysis will contribute to the
development of improved quinoa varieties in both within
and outside of the native cultivation range.

Conclusion
Our study revealed a high level of variation of quinoa
varieties and accessions to Peronospora variabilis infec-
tions. We have shown that cross-infection from C. album

to C. quinoa and vice-versa is feasible and this widely dis-
tributed weed is likely a reservoir for the pathogen and an
alternate host for the P. variabilis, which has implications
for quinoa cultivation in the presence of C. album. The
substantial variation in mildew tolerance between geno-
types has a strong genetic component is therefore is
amenable to selection in breeding programs. However, in-
ferences based on a single experiment - or a single loca-
tion field trial - should be taken with care because a large
genotype by experiment interaction was found, so future
work on the resistance of C. quinoa to P. variabilis must
take this into consideration during the design and plan-
ning phases.

Methods
Plant material
The quinoa genotypes analyzed in this study consist of
106 accessions stored in the National Germplasm Bank
of Bolivia. They include landraces collected in Bolivia
(55 accessions), Peru (33), Ecuador (7) and Chile (4), in
altitudes ranging from 2m.a.s.l. to 4082m.a.s.l. (Fig. 6).
Seven accessions had no information about their origin.
We also included 21 Bolivian cultivars, the Bolivian var-
iety ‘Blanca’ (‘Blanquita’) and three Danish varieties
‘Puno’, ‘Vikinga’ and ‘Titicaca’. The list of accessions and
their passport data are provided in Supplementary File 1
(Source: http://germoplasma.iniaf.gob.bo).
Genebank accessions were selected to represent both

the geographic diversity of quinoa and variation in mil-
dew tolerance, which was scored in field trials in La Paz
(Bolivia) based on spontaneous infections by P. variabi-
lis. Additional information on the genetic status of ac-
cessions, scoring method, phenological stage during
scoring, and trial locations were not available from pass-
port data.
Four quinoa varieties and the wild relative common

goosefoot (Chenopodium album L.) were used as control
varieties in greenhouse experiments. The four quinoa
varieties include the cultivar ‘Blanca’, which is adapted
to the Northern highlands and Inter-Andean valleys of
Bolivia and partially resistant to downy mildew [3, 52].
The other three control varieties ‘Titicaca’, ‘Puno’ and
‘Vikinga’ were developed in the quinoa breeding pro-
gram of the University of Copenhagen. Varieties Puno
(KVL 37) and Titicaca were bred from Chilean and
Peruvian landraces and selected for earliness and adapta-
tion to European conditions [67, 68]. They showed dif-
ferent levels of downy mildew susceptibility in a field
trial (S.-E. Jacobsen, personal communication), which
was confirmed in a pilot experiment for this study
(Supplementary Fig. S1). Chenopodium album is closely
related to quinoa and a widely distributed weed. C.
album seeds used in this study were collected in 2017
and 2018 at a former quinoa breeding field at the

Colque-Little et al. BMC Plant Biology           (2021) 21:41 Page 11 of 19

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



experimental station of the Faculty of Science, University
of Copenhagen (Højibakkegaard, Tåstrup).
Experimental research on these plants, including the

collection of plant material, complied fully with institu-
tional, national, and international guidelines. Green-
house studies were conducted in accordance with local
legislation. Permission was granted from INIAF-Bolivia
to use the seed material of the Bolivian genebank acces-
sions for the sole purpose of this research on the under-
standing all seeds will be destroyed on completion of the
project. Seeds of the Danish varieties was provided as
gift by the company QuinoaQuality Aps.

Peronospora variabilis isolate used for inoculation
Previous research recognized the role of alternate hosts
on the evolution and spread of pathotypes [69] P. variabilis
is a pathogen of both C. quinoa and C. album [8, 14, 15,
18, 20]. To obtain a defined isolate of P. variabilis, leaves
from C.album with typical downy mildew sporulation were

collected in late September 2018 at a former quinoa breed-
ing field on the research station Højibakkegaard. The iso-
late was inoculated for maintenance and propagation into
two quinoa cultivars (Blanca and Vikinga) using a protocol
by Danielsen and Ames [48]. We used these two cultivars
because they differed in their latent period [40]. The latent
period lasted 5 days in the Vikinga variety and 7–10 days in
the Blanca variety. These differences allowed to maintain
the pathogen on Blanca, and a quick propagation on the
Vikinga variety.
We used DNA sequencing of the Internal Transcribed

Spacer (ITS) region to confirm that the isolate was P.
variabilis. A spore suspension (1 × 1011 spores/ml) pro-
duced from the maintained inoculum was filtered with a
nylon filter with 20 μ m pore size (Merck Millipore Ltd.)
to capture P. variabilis spores, which were transferred to
1.5 ml microcentrifuge tubes containing glass beads
(425–600 μ m) and kept on ice. 200 μ l lysis buffer
(DNAeasy Plant Mini Kit, Qiagen) were added and

Fig. 6 Distribution of germplasm bank accessions across south America by elevation according to the passport data. Source of geographic
coordinates: Bolivian National Germplasm Bank (http://germoplasma.iniaf.gob.bo). The map was created with the R package mapdata, which uses
coordinates from the CIA World Data Bank II data
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mycelia were pulverized with a sterile pestle. Further
200 μ l of lysis-buffer with 4 μ l of RNase were added.
DNA was extracted with a DNeasy Plant Mini Kit
(Qiagen) following manufacturer’s instructions. Primers
designed to amplify a 1150 bp fragment covering ITS-1
and ITS-2 region in members of the oomycete family
Peronosporaceae, including species of Peronospora,
Pythium, and Phytophthora, were amplified from gen-
omic DNA by polymerase chain reaction (PCR) using
Oomyc Fw-1: 5′ cggaaggatcattaccacac and Oomyc-Rv1:
5′ cgcttattgatatgcttaagttca as forward and reverse
primers, respectively. PCR amplification was carried out
with one cycle of 95C for 3 min; 35 cycles of 94C for 30
s, 55C for 30 s and 72C for 40 s, and one cycle of 72C
for 3min. Amplification products were purified using
QIAquick PCR purification columns (Qiagen) and the
DNA concentrations were determined on a NanoDrop
Lite Spectrophotometer. DNA sequencing of the PCR
amplified ITS was performed at Eurofins Genomics.
DNA sequences were submitted to NCBI (accession
MT895880) and compared against the NCBI nr database
using BLASTN (https://blast.ncbi.nlm.nih.gov).

Identification of P. variabilis by microscopy and
histopathology
The identity of the pathogen was also confirmed by visual
analysis with microscopic and histopathology slides.
Microscopic analysis was carried out with a sample of the
Peronospora solution mounted on a glass slide. Histo-
pathological slides were prepared from Blanca leaf pieces
of ±5 cm 2 collected 7 days after infection. Leaf samples
were coated with nail polish on the abaxial side and dried
for 24 h. The imprints were then removed and stained

with Lactophenol Aniline Blue [70]. Both microscopic and
histopathological preparations were mounted on a Leica
microscope MZ12.5 and photographed with a LEICA
DFC420 camera under 40X magnification (Fig. 7a, b).
Additionally, live infections were captured with a digital
microscope (Dino-Lite, model AM4113/AD4113 Dino-
Lite, Naarden, Holland) (Fig. 7c). After verification and
calibration of the pathogen, the isolate was constantly
propagated in planta on Vikinga and Blanca. The detailed
protocol for the isolation and propagation of the pathogen
is available in Supplementary File 2.

Design of phenotypic characterization
Phenotypic data were collected in greenhouses of the
University of Copenhagen between February and May
2019. The response of quinoa genotypes to downy
mildew inoculation was evaluated in three sequential
identical experiments that each included the complete
set of 132 genotypes and the four control varieties with
a randomized complete block design with four blocks
each. Each experiment occupied a greenhouse allocated
exclusively for the experiment to avoid infestations with
insects or risk of cross contamination as well as the
provision of biological control agents. Experiments
started 2 weeks after the end of the prior one. Within
blocks, accessions and cultivars were represented by a
single plant while control varieties were represented by 2
to 5 plants.
Prior to the experiment, the Bolivian gene bank acces-

sions were self-pollinated once to increase homozygosity
because the heterozygosity of genebank accessions was
unknown. Seeds were produced in a greenhouse between
February and August 2017 with a 12 h photoperiod, an

Fig. 7 Microscopic and histopathological imaging of Peronospora variabilis. a Sporangiophore and spores. b Spore and hyphae penetrating a
stoma during infection (cultivar Blanca, 7 days after inoculation). c Branched sporangiophore bearing sporangia emerging from leaf surface. Scale
bar is 20 um for (a), (b), and 100 um for (c)
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average temperature of 24C during the day, 18C at night,
and irrigated with fertilized water (NPK 14–3-23 +mg
EC 1.9). After the day length surpassed the plants re-
quirements, greenhouse curtains were used to maintain
the photoperiod. Seeds were harvested, cleaned and
stored at natural conditions until January 2018. Har-
vested seeds were sown in jiffy pots containing peat to
assure the provision of plantlets for transplantation and
grown for seven to ten days. To avoid infestation with
flies, the compost was watered with a solution of gnatrol
(10% v/v). Plantlets were then transplanted to 550 cm 3

pots and grown for 3 weeks in greenhouses under the
same conditions. The greenhouse management included
biological control agents against common greenhouse-
borne pests.
Three weeks after transplanting, plants were moved to

different greenhouses and inoculated with a calibrated
solution (1 × 105 spores/ml) of P. variabilis spores and
Tween 20 (1%). The solution was sprayed comprehen-
sively onto each plant with a pressure paint gun. 50 ml
of solution were used for each block. Blocks with inocu-
lated plants were covered with a plastic sheet 5 days after
inoculation (Fig. 8a) for 24 h under complete darkness
and a night-time temperature of 15C to create condi-
tions that stimulate infection. After removal of the cover,
plants were grown under greenhouse conditions. Once
symptoms were observed (Fig. 8b), usually between 5
and 6 days after inoculation, plants were covered again
for 24 h to promote sporulation.

The plant response to pathogen infection was mea-
sured with the three variables: severity, sporulation, and
incidence. Scoring of severity and sporulation by visual
analysis of the foliar area covered by lesions of chlorotic
or other color on the adaxial leaf side and the area of
diseased tissue with visible spores on the abaxial leaf
side, respectively. Measurements were recorded as per-
centages for each leaf and then averaged per plant. Inci-
dence was calculated as the proportion of leaves with
symptoms. These parameters were measured by the
same person to avoid operator bias and all plants had
the same age when scored.

Phenotyping of stomata
To measure width, length, and density of stomata on leaf
surfaces, a resin cast of the abaxial surface of one leaf
from each genotype was made [71]. After drying, a layer
of nail polish was added to the cast, left to dry, removed,
mounted onto a glass slide and covered with a glass
coverslip. Slides were mounted on a Leica MZ12.5 op-
tical microscope and three fields were photographed
using a Leica DFC420 digital microscope camera with
40X magnification. Width and length were measured
using the Leica Application Suite software. Stomatal
density was estimated as the number of stomata per unit
of area and stomatal counts were obtained by using Sto-
mata Counter, a web-based application, followed by
manual curation of the data [72].

Fig. 8 Setup of inoculation experiment. a Block of the experiment with plastic sheet covers to provide high humidity. b Plants within a block
during the darkness phase of infection. c Severity symptoms ranging from hypersensitive reactions causing pale yellowish spots (left) to high
susceptibility with chlorotic lesions covering the whole leaf (right) d Leaf of tolerant Puno control variety showing chlorotic lesions but no
sporulation. e Leaf of Cultivar 21 (Mañiqueña) with signs of sporulation

Colque-Little et al. BMC Plant Biology           (2021) 21:41 Page 14 of 19

Content courtesy of Springer Nature, terms of use apply. Rights reserved.



Analysis of phenotypic data with linear mixed models
(LMM)
The following mixed model was used to estimate the
mean severity and sporulation of the disease for each
genotype in the panel, using ASREML-R package version
3.0 [73]:

yijk ¼ μþ ρi þ βij þ αk þ ραij
� �þ eijk ð1Þ

where yijk is the response (severity or sporulation) of the
k-th genotype in the j-th block of the i-th experiment, μ
is the general mean, ρi is the effect of the i-th experi-
ment, βij is the effect of the j-th block nested within the
i-th experiment, αk is the genotype effect, ραij is the
genotype-experiment interaction, and eijk is the residual
error term. The effects for experiments, blocks within
experiments and the genotype-experiment interaction
were treated as random effects because experiments
were considered as a random factor and hence all effects
involving a random factor need to be modelled as
random [74], whereas main effects of genotypes were
treated as fixed. To avoid the influence of outliers on
estimates of genetic variance, outliers were detected after
fitting the model and removed from the dataset using
the default method of the PLABSTAT package [75], as
described in [76].
The residual error for the experiments was initially

modeled as normally distributed and independent with a
common variance component, where n is the total num-
ber of observations. In addition, we fitted a model such
that the variance-covariance matrix of the vector of
errors (sorted by experiments) was R∼Nð0; σ2

e InÞ , where
n is the total number of observations. In addition, we
fitted a model with independent variance components
for each experiment [77]:

R ¼ ⊕
s

j¼1
Rj ¼

R1 0 0
0 R2 0
0 0 R3:

2

4

3

5

where ⊕s
j¼1Rj is the direct sum of matrices and R1, R2

and R3 are variance-covariance structures for each ex-
periment, each taking the form Rj ¼ Σ2

eð jÞ�Inj , where nj
is the number of observations in the j− th experiment.

Analysis with generalized linear mixed models (GLMM)
We used a Generalized Linear Mixed Model (GLMM) to
analyze the incidence of downy mildew in quinoa and fit
the following model with the PROC GLIMMIX proced-
ure of SAS software:

logit πijk
� � ¼ ηijk ¼ μþ ρi þ βij þ αk þ ραik ð2Þ

where logit is the link function between the linear
predictor and the observations (pijk), ρi is the effect of

the i-th experiment, βij is the effect of the j-th block
nested within the i-th experiment, αk is the genotype
effect, and ραik is the genotype-experiment interaction.
The model included a scale parameter account for over-
dispersion of the data through the residual keyword in
the RANDOM statement of PROC GLIMMIX in SAS
version 9.0 [78].

Heritability estimation
The ad-hoc broad-sense heritability was estimated as:

�H2 ¼ σ2g

σ2g þ
�υ
2

ð3Þ

where σ2g is the genetic variance and �υ is the mean
variance of the difference of the adjusted means [33]. To

estimate �H2, models were fit with genotypes as a random
effect using the ASREML-R package for severity and
sporulation and PROC GLIMMIX in SAS for incidence
to obtain an estimate of σ2g . The models with genotypes

as fixed effect were used to estimate �υ.

Model comparisons
To compare models with different error variance struc-
tures, the restricted likelihood ratio test implemented in
the asremlPlus R package [79] was used to test if hetero-
geneous error variances improved the model. The effect
of replicated control varieties on estimates of genetic
variance was addressed by adding a dummy variable to
the severity of infection, sporulation and incidence
models [80]. Such a model was formulated as

yijk ¼ μþ ρij þ βij þ Yαk þW ραij
� �þ eijk ð4Þ

where Y and W are vectors with 0 for reference varieties
and 1 for cultivars and accessions, αk is the genetic ran-
dom effect. The remaining effects are the same as in
Eqs. (1) and (2). These models were compared using the
mean standard error of the difference (s.e.d.) and herit-
ability. The s.e.d.’s were calculated using the predictplus
function of the asremlPlus R package [79].
The effect of transforming our severity of infection

and sporulation scorings on heritability estimates was
evaluated by repeating the steps outlined above with
data transformed with the logit ð log½ p

1 − p�Þ and the

angular, or arcsine root, transformation ð sin − 1½ ffiffiffi
p

p �Þ ,
where p are the severity of infection or sporulation
observations. Because the logit function is undefined
at 0 or 1, the data at these limits was adjusted by
adding and subtracting 0.025 from the original value.
The fixed effect of genotypes was tested by using
Wald’s F-test as implemented in the ASREML R
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package for LMMs and type II tests of fixed effects of
the Proc GLIMMIX procedure of SAS.

Comparisons between means
The mean severity and sporulation for the downy
mildew infection on each genotype, their confidence
intervals and all pairwise comparisons were estimated
with the asremlPlus R package [79] for severity and
sporulation, and the PROC GLIMMIX procedure of SAS
for incidence. Comparisons between the means were
based on t-tests with a significance threshold α = 0.05.

Correlation between traits
To identify any correlations between phenotypic traits
and traits related to the tolerance of quinoa against mil-
dew, i.e. severity, sporulation, and incidence, we used
our data from measurements of stomata (width, length,
and density). Pearson correlation coefficients were esti-
mated for each pair of variables with a significance
threshold α = 0.05, using the R package Hmisc [81].

Relationship between saponin presence and downy
mildew severity
Saponin content of seeds was assessed using the foam
test [82], which consists of placing 0.5 g seeds with 5ml
distilled water in a test tube and shaking vigorously for
30 s. Foam height was recorded to the nearest 0.1 cm
after shaking. To estimate the robustness of this saponin
assay, two seed samples per gene bank accession were
evaluated, one from plants grown in Bolivia and one
from plants propagated at Højbakkegaard. All accessions
with reads equal to zero (i.e., no foam was observed after
shaking) were labeled as “no saponin” and all others
were marked as “with saponin”. To test for a relationship
between saponin presence or absence and downy mildew
severity, we conducted a t-test using the adjusted means
obtained from a LMM with heterogeneous variances be-
tween experiments using an untransformed data without
the control varieties. This set of means was used because
there was no indication from the previous analysis that
fitting models with transformed data improved accuracy
of the estimates.

Whole genome DNA sequencing
For DNA extraction, two plants per genotype were
grown in a greenhouse of the Taastrup campus at the
University of Copenhagen, and two healthy leaves from
a single two-months old plant were collected and stored
with silica gel for drying. DNA was extracted using the
AX Gravity DNA extraction kit (A&A Biotechnology,
Gdynia, Poland) following manufacturer’s instructions.
Purity and quality of DNA were controlled by agarose
gel electrophoresis and concentration determined with a
Qubit instrument using SYBR green staining. DNA

sequencing libraries were constructed using the protocol
of Baym et al. [83]. Whole-genome sequencing was done
with short-read Illumina sequencing on an Illumina
NovaSeq machine (Novogene).

Genome sequencing, variant calling and genotype
imputation
Processing of the raw reads, mapping, and variant calling
were done with a custom Snakemake pipeline [84]. Raw
reads were trimmed with Trim_galore v 0.6.4 [85]
(parameters -q 30 –fastqc –paired). Reads were then
sorted and indexed with SAMTOOLS 1.10 [86] and
deduplicated with the MarkDuplicates (parameter RE-
MOVE_DUPLICATES = TRUE tool of PICARD v2.21.9
[87]. The resulting FASTQ files were mapped against
the quinoa reference genome version 1.0 [88] and the
organellar genomes [89] using the Burrows-Wheeler
Aligner v0.7.17 [90] with default parameters.
Variants (SNPs and indels) were called using GATK

3.8 [91] by using the HaplotypeCaller tool with a mini-
mum per-base quality score of 20 and a minimum map-
ping quality score of 30. The GVCF files per sample
were merged with the GenotypeGVCFs tool of GATK
with default parameters. Missing data was imputed and
filtered using LinkImputeR 1.2.3, which allows the user
to define a series of filters and evaluate their effect on
the accuracy and final number of imputed markers [92].
Thresholds for imputation were depth =8 (Number of
reads including a position) and missingness =0.7 (Pro-
portion of positions/samples with less than the threshold
depth). Variant data were filtered to a minor allele fre-
quency >= 0.05 and a deviation from Hardy-Weinberg
equilibrium p> 0.01 using a likelihood ratio test [93].
Linkage disequilibrium was estimated with a pair-wise
correlation coefficient between variants, r2, using the
final VCF file as input for PopLDdecay [94] with default
parameters.

Genome-wide association study (GWAS)
We used two methods for association mapping, Farm-
CPU, for use with sequence variants (SNPs) and a k-
mer-based method. FarmCPU (Fixed and random model
Circulating Probability Unification) uses SNP in a two-
step iterative process with fixed and random effects
models to improve computation times, reduce the con-
founding effects of structure and improve power to iden-
tify significant marker-trait associations in comparison
to other methods [95, 96]. The model was run with and
without the inclusion of the first three principal compo-
nents with a p-value threshold of 0.01 (Bonferroni cor-
rected) for both the inclusion of a marker during the
first iteration of the model as well as the genome-wide
significance threshold.
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The k-mer based method by [97] identifies genotype-
phenotype associations using sequencing reads instead
of molecular variants to address the lack of a reference
genome or account for structural variation. We imple-
mented the method in a Snakemake pipeline using the
following parameters: k-mer length of =31 nucleotides,
minor allele count =3 minor allele frequency =0.05. This
method requires a kinship matrix, which was estimated
with a method used by EMMA (Efficient Mixed-Model
Association) and consists of an identical-by-state (IBS)
allele-sharing matrix under the assumption that every
variant has a small random effect on the phenotype [98].
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